1,062 research outputs found
Degenerate dispersive equations arising in the study of magma dynamics
An outstanding problem in Earth science is understanding the method of
transport of magma in the Earth's mantle. Models for this process, transport in
a viscously deformable porous media, give rise to scalar degenerate,
dispersive, nonlinear wave equations. We establish a general local
well-posedness for a physical class of data (roughly ) via fixed point
methods. The strategy requires positive lower bounds on the solution. This is
extended to global existence for a subset of possible nonlinearities by making
use of certain conservation laws associated with the equations. Furthermore, we
construct a Lyapunov energy functional, which is locally convex about the
uniform state, and prove (global in time) nonlinear dynamic stability of the
uniform state for any choice of nonlinearity. We compare the dynamics to that
of other problems and discuss open questions concerning a larger range of
nonlinearities, for which we conjecture global existence.Comment: 27 Pages, 7 figures are not present in this version. See
http://www.columbia.edu/~grs2103/ for a PDF with figures. Submitted to
Nonlinearit
Use of artificial intelligence in the detection of primary prostate cancer in multiparametric MRI with its clinical outcomes: a protocol for a systematic review and meta-analysis
INTRODUCTION: Multiparametric MRI (mpMRI) has transformed the prostate cancer diagnostic pathway, allowing for improved risk stratification and more targeted subsequent management. However, concerns exist over the interobserver variability of images and the applicability of this model long term, especially considering the current shortage of radiologists and the growing ageing population. Artificial intelligence (AI) is being integrated into clinical practice to support diagnostic and therapeutic imaging analysis to overcome these concerns. The following report details a protocol for a systematic review and meta-analysis investigating the accuracy of AI in predicting primary prostate cancer on mpMRI. METHODS AND ANALYSIS: A systematic search will be performed using PubMed, MEDLINE, Embase and Cochrane databases. All relevant articles published between January 2016 and February 2023 will be eligible for inclusion. To be included, articles must use AI to study MRI prostate images to detect prostate cancer. All included articles will be in full-text, reporting original data and written in English. The protocol follows the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 checklist. The QUADAS-2 score will assess the quality and risk of bias across selected studies. ETHICS AND DISSEMINATION: Ethical approval will not be required for this systematic review. Findings will be disseminated through peer-reviewed publications and presentations at both national and international conferences. PROSPERO REGISTRATION NUMBER: CRD42021293745
Prostate-specific membrane antigen positron emission tomography compared to multiparametric MRI for prostate cancer diagnosis: a protocol for a systematic review and meta-analysis
Introduction The introduction of multiparametric MRI (mpMRI) has improved almost every aspect of the prostate cancer diagnostic pathway. However, the novel imaging technique, prostate-specific membrane antigen positron emission tomography (PSMA PET) may have demonstrable accuracy in detecting and staging prostate cancer. Here, we describe a protocol for a systematic review and meta-analysis comparing mpMRI to PSMA PET for the diagnosis of suspected prostate cancer.
Methods and analysis A systematic search of MEDLINE, EMBASE, PubMed and Cochrane databases will be conducted. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines will be followed for screening, data extraction, statistical analysis and reporting. Included papers will be full-text articles providing original data, written in English articles and comparing the use of PSMA PET with mpMRI in the diagnosis of prostate cancer. All studies published between July 1977 and March 2021 will be eligible for inclusion. Study bias and quality will be assessed using Quadas-2 score. To ensure the quality of the reporting of studies, this protocol is written following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 checklist
A treatment that eliminates SARS-CoV-2 replication in human airway epithelial cells and is safe for inhalation as an aerosol in healthy human subjects
Background: Low airway surface pH is associated with many airway diseases, impairs antimicrobial host defense and worsens airway inflammation. Inhaled Optate is designed to safely to raise airway surface pH and is well-tolerated in humans. Raising intracellular pH partially prevents activation of SARS-CoV-2 in primary normal human airway epithelial (NHAE) cells, decreasing viral replication by several mechanisms.
Methods: Here, we grew primary normal human airway epithelial (NHAE) cells from healthy subjects, infected them with SARS-CoV-2 (isolate USA-WA1/2020), and used clinical Optate at concentrations used in humans in vivo to determine whether it would prevent viral infection and replication. Cells were pre-treated with Optate or placebo prior to infection (MOI of 0.1) and viral replication was determined by plaque assay and nucleocapsid (N) protein levels. Healthy human subjects also inhaled Optate as part of a Phase 2a safety trial.
Results: Optate almost completely prevented viral replication at each time point between 24 and 120 hours, relative to placebo, both by plaque assay and by N protein expression (p < 0.001). Mechanistically, Optate inhibited expression of major endosomal trafficking genes and raised NHAE intracellular pH. Optate had no effect on NHAE cell viability at any time point. Inhaled Optate was well tolerated in 10 normal subjects, with no change in lung function, vital signs or oxygenation.
Conclusions: Inhaled Optate may be well-suited for a clinical trial in patients with a pulmonary SARS-CoV-2 infection. However, it is vitally important for patient safety that formulations designed for inhalation with regards to pH, isotonicity and osmolality be used. An inhalational treatment that safely prevents SARS-CoV-2 viral replication could be helpful for treating patients with pulmonary SARS-CoV-2 infection.Funded by NHLBI (P01 HL128192), the Lilly Endowment, and the
Riley Children’s Foundation.
Competing Interests: MDD and BG are funded by NIH P01 HL128192-01A1, are patent holders of Optate, and are co-Founders of Airbase Breathing Company.
SDG and CMR are also patent holders of Optate
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors
Combination antiretroviral therapy (CART) has greatly reduced medical morbidity and mortality with HIV infection, but high rates of HIV-associated neurocognitive disorders (HAND) continue to be reported. Because large HIV-infected (HIV+) and uninfected (HIV−) groups have not been studied with similar methods in the pre-CART and CART eras, it is unclear whether CART has changed the prevalence, nature, and clinical correlates of HAND. We used comparable methods of subject screening and assessments to classify neurocognitive impairment (NCI) in large groups of HIV + and HIV − participants from the pre-CART era (1988–1995; N = 857) and CART era (2000–2007; N = 937). Impairment rate increased with successive disease stages (CDC stages A, B, and C) in both eras: 25%, 42%, and 52% in pre-CART era and 36%, 40%, and 45% in CART era. In the medically asymptomatic stage (CDC-A), NCI was significantly more common in the CART era. Low nadir CD4 predicted NCI in both eras, whereas degree of current immunosuppression, estimated duration of infection, and viral suppression in CSF (on treatment) were related to impairment only pre-CART. Pattern of NCI also differed: pre-CART had more impairment in motor skills, cognitive speed, and verbal fluency, whereas CART era involved more memory (learning) and executive function impairment. High rates of mild NCI persist at all stages of HIV infection, despite improved viral suppression and immune reconstitution with CART. The consistent association of NCI with nadir CD4 across eras suggests that earlier treatment to prevent severe immunosuppression may also help prevent HAND. Clinical trials targeting HAND prevention should specifically examine timing of ART initiation
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis
European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation
Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
- …