159 research outputs found
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
We report a quasi-differential upper limit on the extremely-high-energy (EHE)
neutrino flux above GeV based on an analysis of nine years of
IceCube data. The astrophysical neutrino flux measured by IceCube extends to
PeV energies, and it is a background flux when searching for an independent
signal flux at higher energies, such as the cosmogenic neutrino signal. We have
developed a new method to place robust limits on the EHE neutrino flux in the
presence of an astrophysical background, whose spectrum has yet to be
understood with high precision at PeV energies. A distinct event with a
deposited energy above GeV was found in the new two-year sample, in
addition to the one event previously found in the seven-year EHE neutrino
search. These two events represent a neutrino flux that is incompatible with
predictions for a cosmogenic neutrino flux and are considered to be an
astrophysical background in the current study. The obtained limit is the most
stringent to date in the energy range between and GeV. This result constrains neutrino models predicting a three-flavor
neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\
{\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}10^9\ {\rm GeV}$. A significant part
of the parameter-space for EHE neutrino production scenarios assuming a
proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review
Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube
After the identification of the gamma-ray blazar TXS 0506+056 as the first
compelling IceCube neutrino source candidate, we perform a systematic analysis
of all high-energy neutrino events satisfying the IceCube realtime trigger
criteria. We find one additional known gamma-ray source, the blazar GB6
J1040+0617, in spatial coincidence with a neutrino in this sample. The chance
probability of this coincidence is 30% after trial correction. For the first
time, we present a systematic study of the gamma-ray flux, spectral and optical
variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to
TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the
Fermi-LAT gamma-ray band, being in an active state around the arrival of
IceCube-170922A, but in a low state during the archival IceCube neutrino flare
in 2014/15. In both cases the spectral shape is statistically compatible () with the average spectrum showing no indication of a significant
relative increase of a high-energy component. While the association of GB6
J1040+0617 with the neutrino is consistent with background expectations, the
source appears to be a plausible neutrino source candidate based on its
energetics and multi-wavelength features, namely a bright optical flare and
modestly increased gamma-ray activity. Finding one or two neutrinos originating
from gamma-ray blazars in the given sample of high-energy neutrinos is
consistent with previously derived limits of neutrino emission from gamma-ray
blazars, indicating the sources of the majority of cosmic high-energy neutrinos
remain unknown.Comment: 22 pages, 11 figures, 2 Table
Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data
The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through
the Astrophysical Multimessenger Observatory Network (AMON) framework, have
developed a multimessenger joint search for extragalactic astrophysical
sources. This analysis looks for sources that emit both cosmic neutrinos and
gamma rays that are produced in photo-hadronic or hadronic interactions. The
AMON system is running continuously, receiving sub-threshold data (i.e. data
that is not suited on its own to do astrophysical searches) from HAWC and
IceCube, and combining them in real-time. We present here the analysis
algorithm, as well as results from archival data collected between June 2015
and August 2018, with a total live-time of 3.0 years. During this period we
found two coincident events that have a false alarm rate (FAR) of
coincidence per year, consistent with the background expectations. The
real-time implementation of the analysis in the AMON system began on November
20th, 2019, and issues alerts to the community through the Gamma-ray
Coordinates Network with a FAR threshold of coincidences per year.Comment: 14 pages, 5 figures, 3 table
Paper Trails: Following the Money
In many recent elections, the candidates who raise the most money have a better shot at winning, so candidates must raise millions of dollars to win an election. A top question to consider in all elections: Where is the money coming from?
Posting about the financing behind federal elections from In All Things - an online hub committed to the claim that the life, death, and resurrection of Jesus Christ has implications for the entire world.
http://inallthings.org/paper-trails-following-the-money
A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole.
The main goal of IceCube is the detection of astrophysical neutrinos and the
identification of their sources. High-energy muon neutrinos are observed via
the secondary muons produced in charge current interactions with nuclei in the
ice. Currently, the best performing muon track directional reconstruction is
based on a maximum likelihood method using the arrival time distribution of
Cherenkov photons registered by the experiment's photomultipliers. A known
systematic shortcoming of the prevailing method is to assume a continuous
energy loss along the muon track. However at energies TeV the light yield
from muons is dominated by stochastic showers. This paper discusses a
generalized ansatz where the expected arrival time distribution is parametrized
by a stochastic muon energy loss pattern. This more realistic parametrization
of the loss profile leads to an improvement of the muon angular resolution of
up to for through-going tracks and up to a factor 2 for starting tracks
over existing algorithms. Additionally, the procedure to estimate the
directional reconstruction uncertainty has been improved to be more robust
against numerical errors
Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope
We report in detail on searches for eV-scale sterile neutrinos, in the
context of a 3+1 model, using eight years of data from the IceCube neutrino
telescope. By analyzing the reconstructed energies and zenith angles of 305,735
atmospheric and events we construct confidence
intervals in two analysis spaces: vs.
under the conservative assumption ; and
vs. given sufficiently large that
fast oscillation features are unresolvable. Detailed discussions of the event
selection, systematic uncertainties, and fitting procedures are presented. No
strong evidence for sterile neutrinos is found, and the best-fit likelihood is
consistent with the no sterile neutrino hypothesis with a p-value of 8\% in the
first analysis space and 19\% in the second.Comment: This long-form paper is a companion to the letter "An eV-scale
sterile neutrino search using eight years of atmospheric muon neutrino data
from the IceCube Neutrino Observatory". v2: update other experiments contours
on results plo
An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory
The results of a 3+1 sterile neutrino search using eight years of data from
the IceCube Neutrino Observatory are presented. A total of 305,735 muon
neutrino events are analyzed in reconstructed energy-zenith space to test for
signatures of a matter-enhanced oscillation that would occur given a sterile
neutrino state with a mass-squared differences between 0.01\,eV and
100\,eV. The best-fit point is found to be at
and , which is consistent with the no sterile
neutrino hypothesis with a p-value of 8.0\%.Comment: 11 pages, 5 figures. This letter is supported by the long-form paper
"Searching for eV-scale sterile neutrinos with eight years of atmospheric
neutrinos at the IceCube neutrino telescope," also appearing on arXiv.
Digital data release available at:
https://github.com/icecube/HE-Sterile-8year-data-releas
All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data
We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained
Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes
[EN] The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation Âżelds. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRAg model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No signiÂżcant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid RamĂrez, M.; Aubert, J-.; Aublin, J.; Avgitas, T.... (2018). Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. The Astrophysical Journal. 868(2):1-7. https://doi.org/10.3847/2041-8213/aaeecfS178682Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., ⊠Anderson, T. (2017). Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. The Astrophysical Journal, 846(2), 136. doi:10.3847/1538-4357/aa8508Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., ⊠Archinger, M. (2015). A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. The Astrophysical Journal, 809(1), 98. doi:10.1088/0004-637x/809/1/98Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., ⊠Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., ⊠Anderson, T. (2017). Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. The Astrophysical Journal, 849(1), 67. doi:10.3847/1538-4357/aa8dfbAartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., ⊠Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012Ackermann, M., Ajello, M., Atwood, W. B., Baldini, L., Ballet, J., Barbiellini, G., ⊠Berenji, B. (2012). FERMI-LAT OBSERVATIONS OF THE DIFFUSE Îł-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM. The Astrophysical Journal, 750(1), 3. doi:10.1088/0004-637x/750/1/3AdriĂĄn-MartĂnez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., AndrĂ©, M., ⊠Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., AndrĂ©, M., ⊠Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Ahn, H. S., Allison, P., Bagliesi, M. G., Beatty, J. J., Bigongiari, G., Childers, J. T., ⊠Zinn, S. Y. (2010). DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA. The Astrophysical Journal, 714(1), L89-L93. doi:10.1088/2041-8205/714/1/l89Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., ⊠Basa, S. (2017). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 96(6). doi:10.1103/physrevd.96.062001Antoni, T., Apel, W. D., Badea, A. F., Bekk, K., Bercuci, A., BlĂŒmer, J., ⊠Zabierowski, J. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astroparticle Physics, 24(1-2), 1-25. doi:10.1016/j.astropartphys.2005.04.001Apel, W. D., Arteaga-VelĂĄzquez, J. C., Bekk, K., Bertaina, M., BlĂŒmer, J., Bozdog, H., ⊠Cossavella, F. (2013). KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astroparticle Physics, 47, 54-66. doi:10.1016/j.astropartphys.2013.06.004Gaggero, D., Grasso, D., Marinelli, A., Taoso, M., & Urbano, A. (2017). Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT
Îł
-Ray Data. Physical Review Letters, 119(3). doi:10.1103/physrevlett.119.031101Gaggero, D., Grasso, D., Marinelli, A., Urbano, A., & Valli, M. (2015). THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF
FERMI
-LAT, MILAGRO, AND ICECUBE RESULTS. The Astrophysical Journal, 815(2), L25. doi:10.1088/2041-8205/815/2/l25Gaggero, D., Urbano, A., Valli, M., & Ullio, P. (2015). Gamma-ray sky points to radial gradients in cosmic-ray transport. Physical Review D, 91(8). doi:10.1103/physrevd.91.083012Vladimirov, A. E., Digel, S. W., Jóhannesson, G., Michelson, P. F., Moskalenko, I. V., Nolan, P. L., ⊠Strong, A. W. (2011). GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Computer Physics Communications, 182(5), 1156-1161. doi:10.1016/j.cpc.2011.01.01
Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube
The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. The interaction rate is determined by the neutrino interaction cross section and affects the flux arriving at the IceCube Neutrino Observatory, a cubic-kilometer neutrino detector embedded in the Antarctic ice sheet. We present a measurement of the neutrino cross section between 60 TeV and 10 PeV using the high-energy starting event (HESE) sample from IceCube with 7.5 years of data. The result is binned in neutrino energy and obtained using both Bayesian and frequentist statistics. We find it compatible with predictions from the Standard Model. While the cross section is expected to be flavor independent above 1 TeV, additional constraints on the measurement are included through updated experimental particle identification (PID) classifiers, proxies for the three neutrino flavors. This is the first such measurement to use a ternary PID observable and the first to account for neutrinos from tau decay
- âŠ