1,266 research outputs found
A Chandra Study: Are Dwarf Carbon Stars Spun Up and Rejuvenated by Mass Transfer?
Carbon stars (with C/O> 1) were long assumed to all be giants, because only
AGB stars dredge up significant carbon into their atmospheres. The case is
nearly iron-clad now that the formerly mysterious dwarf carbon (dC) stars are
actually far more common than C giants, and have accreted carbon-rich material
from a former AGB companion, yielding a white dwarf and a dC star that has
gained both significant mass and angular momentum. Some such dC systems have
undergone a planetary nebula phase, and some may evolve to become CH, CEMP, or
Ba giants. Recent studies indicate that most dCs are likely from older,
metal-poor kinematic populations. Given the well-known anti-correlation of age
and activity, dCs would not be expected to show significant X-ray emission
related to coronal activity. However, accretion spin-up might be expected to
rejuvenate magnetic dynamos in these post mass-transfer binary systems. We
describe our Chandra pilot study of six dCs selected from the SDSS for Halpha
emission and/or a hot white dwarf companion, to test whether their X-ray
emission strength and spectral properties are consistent with a rejuvenated
dynamo. We detect all 6 dCs in the sample, which have X-ray luminosities
ranging from logLx= 28.5 - 29.7, preliminary evidence that dCs may be active at
a level consistent with stars that have short rotation periods of several days
or less. More definitive results require a sample of typical dCs with deeper
X-ray observations to better constrain their plasma temperatures.Comment: 13 pages, 5 figures. Revised and resubmitted June 20, accepted June
21, 2019 to Ap
Титульные страницы и содержание
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses
SXP214, an X-ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion
Located in the Small Magellanic Cloud (SMC), SXP214 is an X-ray pulsar in a
high mass X-ray binary system with a Be-star companion. A recent survey of the
SMC under a Chandra X-ray Visionary program found the source in a transition
when the X-ray flux was on a steady rise. The Lomb-Scargle periodogram revealed
a pulse period of 211.49 +/- 0.42 s, which is significantly (>5sigma) shorter
than the previous measurements with XMM-Newton and RXTE. This implies that the
system has gone through sudden spin-up episodes recently. The pulse profile
shows a sharp eclipse-like feature with a modulation amplitude of >95%. The
linear rise of the observed X-ray luminosity from <~2x to 7x10^35 erg s^-1 is
correlated with steady softening of the X-ray spectrum, which can be described
by the changes in the local absorption from N_H ~ 10^24 to <~10^20 cm^-2 for an
absorbed power-law model. The soft X-ray emission below 2 keV was absent in the
early part of the observation when only the pulsating hard X-ray component was
observed, whereas at later times both soft and hard X-ray components were
observed pulsating. A likely explanation is that the neutron star was initially
hidden in the circumstellar disk of the companion, and later came out of the
disk with the accreted material that continued fueling the observed pulsation.Comment: 8 pages, 4 figures, 1 table, accepted for publication in Ap
Faraday Instability in a Surface-Frozen Liquid
Faraday surface instability measurements of the critical acceleration, a_c,
and wavenumber, k_c, for standing surface waves on a tetracosanol (C_24H_50)
melt exhibit abrupt changes at T_s=54degC above the bulk freezing temperature.
The measured variations of a_c and k_c vs. temperature and driving frequency
are accounted for quantitatively by a hydrodynamic model, revealing a change
from a free-slip surface flow, generic for a free liquid surface (T>T_s), to a
surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall
(T < T_s). The change at T_s is traced to the onset of surface freezing, where
the steep velocity gradient in the surface-pinned flow significantly increases
the viscous dissipation near the surface.Comment: 4 pages, 3 figures. Physical Review Letters (in press
Constraints on the Atmospheric Circulation and Variability of the Eccentric Hot Jupiter XO-3b
We report secondary eclipse photometry of the hot Jupiter XO-3b in the
4.5~m band taken with the Infrared Array Camera (IRAC) on the Spitzer
Space Telescope. We measure individual eclipse depths and center of eclipse
times for a total of twelve secondary eclipses. We fit these data
simultaneously with two transits observed in the same band in order to obtain a
global best-fit secondary eclipse depth of and a center of
eclipse phase of . We assess the relative magnitude of
variations in the dayside brightness of the planet by measuring the size of the
residuals during ingress and egress from fitting the combined eclipse light
curve with a uniform disk model and place an upper limit of 0.05. The new
secondary eclipse observations extend the total baseline from one and a half
years to nearly three years, allowing us to place an upper limit on the
periastron precession rate of degrees/day the tightest
constraint to date on the periastron precession rate of a hot Jupiter. We use
the new transit observations to calculate improved estimates for the system
properties, including an updated orbital ephemeris. We also use the large
number of secondary eclipses to obtain the most stringent limits to date on the
orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the
consistency of multiple-epoch Spitzer observations.Comment: 14 pages, 11 figures, published by Ap
Resonance Broadening and Heating of Charged Particles in Magnetohydrodynamic Turbulence
The heating, acceleration, and pitch-angle scattering of charged particles by
MHD turbulence are important in a wide range of astrophysical environments,
including the solar wind, accreting black holes, and galaxy clusters. We
simulate the interaction of high-gyrofrequency test particles with fully
dynamical simulations of subsonic MHD turbulence, focusing on the parameter
regime with beta ~ 1, where beta is the ratio of gas to magnetic pressure. We
use the simulation results to calibrate analytical expressions for test
particle velocity-space diffusion coefficients and provide simple fits that can
be used in other work.
The test particle velocity diffusion in our simulations is due to a
combination of two processes: interactions between particles and magnetic
compressions in the turbulence (as in linear transit-time damping; TTD) and
what we refer to as Fermi Type-B (FTB) interactions, in which charged particles
moving on field lines may be thought of as beads spiralling around moving
wires. We show that test particle heating rates are consistent with a TTD
resonance which is broadened according to a decorrelation prescription that is
Gaussian in time. TTD dominates the heating for v_s >> v_A (e.g. electrons),
where v_s is the thermal speed of species s and v_A is the Alfven speed, while
FTB dominates for v_s << v_A (e.g. minor ions). Proton heating rates for beta ~
1 are comparable to the turbulent cascade rate. Finally, we show that velocity
diffusion of collisionless, large gyrofrequency particles due to large-scale
MHD turbulence does not produce a power-law distribution function.Comment: 20 pages, 15 figures; accepted by The Astrophysical Journal; added
clarifying appendices, but no major changes to result
Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results
We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3′ of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio
Uncertainties in Theoretical HeI Emissivities: HII Regions, Primordial Abundance, and Cosmological Recombination
A number of recent works in astronomy and cosmology have relied upon
theoretical He I emissivities, but we know of no effort to quantify the
uncertainties in the atomic data. We analyze and assign uncertainties to all
relevant atomic data, perform Monte Carlo analyses, and report standard
deviations in the line emissivities. We consider two sets of errors, which we
call "optimistic" and "pessimistic." We also consider three different
conditions, corresponding to prototypical Galactic and extragalactic H II
regions and the epoch of cosmological recombination. In the extragalactic H II
case, the errors we obtain are comparable to or larger than the errors in some
recent calculations, including those derived from CMB observations. We
demonstrate a systematic effect on primordial abundance calculations; this
effect cannot be reduced by observing a large number of objects. In the
cosmological recombination case, the errors are comparable to many of the
effects considered in recent calculations.Comment: 5 pages, 3 figures, accepted to MNRAS Letter
- …
