8 research outputs found

    Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems

    Full text link
    Due to the adoption of EU Regulation No 517/2014, R404A is going to be banned in Europe in most of refrigeration applications, in which is typically used, due to its very high GWP value, 3943. In this paper an experimental comparison between R404A and R448A, a non-flammable alternative with GWP of 1390, is presented. The experimental tests are intended to simulate typical freezing and conservation temperatures and different condensing conditions. Despite cooling capacity of R448A is slightly below that of R404A, R448A energy consumption is even smaller; and R448A COP is higher than that obtained using R404A. Hence, it can be concluded that R448A could be an energy efficient alternative to R404A with a GWP reduction of 70%. Compressor discharge temperature remains at non-dangerous levels.The authors thankfully acknowledge "Ministerio de Educacion, Cultura y Deporte - Gobierno de Espana" (Grant Number FPU12/02841) for supporting this work through "Becas y Contratos de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion del ejercicio 2012".Mota Babiloni, A.; Navarro Esbrí, J.; Peris, B.; Moles, F.; Verdú Martín, GJ. (2015). Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems. Energy Conversion and Management. 105:756-762. https://doi.org/10.1016/j.enconman.2015.08.034S75676210

    Refrigerants and their Environmental Impact Substitution of Hydro Chlorofluorocarbon HCFC and HFC Hydro Fluorocarbon. Search for an Adequate Refrigerant

    Get PDF
    AbstractGlobally, the production of cold housing is seen as a major energy challenge of this new century. The economic development of developing countries, submitted their majority in hot climates, will lead to a growing demand chilling requirements. Yet currently, the production of cold solutions is mainly based on refrigeration systems major consumers of electrical energy.It is then necessary to prepare socio-economically acceptable solutions tailored to meet those needs without compromising future international commitments on the protection of the environment, particularly for reducing greenhouse gas emissions and better protection of the ozone layer by use of refrigerants neutral. For some years now, because of their impact on the environment, the use of halogenated refrigerants has been progressively subject to quotas. In this context, the use of “natural” refrigerants becomes a possible solution. We introduce in this work the merit of redeploying these natural refrigerants as an alternative solution to replace halogenated refrigerants. The solution to the environmental impacts of refrigerant gases would therefore pass by a gas which contains no chlorine no fluorine and does not reject any CO2 emissions in the atmosphere, in brief a green gas! The aim of our project is to contribute to the protection of our environment. Our motive being to produce cold for freezing foodstuffs and seeds, safeguarding pharmaceuticals and cooling of premises: temperature conditions, air qualities controlling and producing. This work is also concerned by a contribution to the reduction of greenhouse gases and by the replacement of the polluting cooling fluids (HCFC). It is essentially the refrigeration at low temperatures, lower than (-20°C), using the solar thermal energy, in order to improve the quality of life for many people especially in arid and semi arid regions in our country
    corecore