8 research outputs found

    Infection With Strongyloides Stercoralis Among Children In Urban Slums Of Kibera In Nairobi, Kenya

    Get PDF
    Background: Strongyloidiasis is an intestinal parasitic infection with poorly-defined geographical Endemicity in Africa. It is a Soil-Transmitted Helminths (STH) infection caused by Strongyloides stercoralis and Strongyloides fuelleborni. Aim: To investigate the prevalence of Strongyloides infection among children living in an urban slum in Nairobi, Kenya. Likewise, to assess it's association with other soil - transmitted Helminths. Methodology and Findings: We used the recently-developed Ss-NIE-1-antibody ELISA assay for Strongyloides to evaluate Sera collected during a 2012 study of Soil Transmitted Helminth infection prevalence among children in the Kibera slum of Nairobi, Kenya. A total of 745 samples from School Age Children (SAC) and Pre-school-age children (PSAC) were tested; eight (1.1%) were positive for Strongyloides. Infection was equally common among SAC and PSAC. No association was found between infection with Strongyloides and infection with other Soil Transmitted Helminths. Conclusion: Strongyloides is a rare infection among children living in the urban slum of Kibera. Similar evaluation of exposure to Strongyloides stercoralis across different age groups and environmental, geographical features in Africa are warranted. Keywords: Strongyloides, children, Keny

    Effects of Single and Integrated Water, Sanitation, Handwashing, and Nutrition Interventions on Child Soil-Transmitted Helminth and Giardia infections: A Cluster-Randomized Controlled Trial in Rural Kenya

    Get PDF
    Helminth and protozoan infections affect more than 1 billion children globally. Improving water quality, sanitation, handwashing, and nutrition could be more sustainable control strategies for parasite infections than mass drug administration, while providing other quality of life benefits

    mUzima Mobile Electronic Health Record (EHR) System: Development and Implementation at Scale

    No full text
    BackgroundThe predominant implementation paradigm of electronic health record (EHR) systems in low- and middle-income countries (LMICs) relies on standalone system installations at facilities. This implementation approach exacerbates the digital divide, with facilities in areas with inadequate electrical and network infrastructure often left behind. Mobile health (mHealth) technologies have been implemented to extend the reach of digital health, but these systems largely add to the problem of siloed patient data, with few seamlessly interoperating with the EHR systems that are now scaled nationally in many LMICs. Robust mHealth applications that effectively extend EHR systems are needed to improve access, improve quality of care, and ameliorate the digital divide. ObjectiveWe report on the development and scaled implementation of mUzima, an mHealth extension of the most broadly deployed EHR system in LMICs (OpenMRS). MethodsThe “Guidelines for reporting of health interventions using mobile phones: mobile (mHealth) evidence reporting assessment (mERA)” checklist was employed to report on the mUzima application. The World Health Organization (WHO) Principles for Digital Development framework was used as a secondary reference framework. Details of mUzima’s architecture, core features, functionalities, and its implementation status are provided to highlight elements that can be adapted in other systems. ResultsmUzima is an open-source, highly configurable Android application with robust features including offline management, deduplication, relationship management, security, cohort management, and error resolution, among many others. mUzima allows providers with lower-end Android smartphones (version 4.4 and above) who work remotely to access historical patient data, collect new data, view media, leverage decision support, conduct store-and-forward teleconsultation, and geolocate clients. The application is supported by an active community of developers and users, with feature priorities vetted by the community. mUzima has been implemented nationally in Kenya, is widely used in Rwanda, and is gaining scale in Uganda and Mozambique. It is disease-agnostic, with current use cases in HIV, cancer, chronic disease, and COVID-19 management, among other conditions. mUzima meets all WHO’s Principles of Digital Development, and its scaled implementation success has led to its recognition as a digital global public good and its listing in the WHO Digital Health Atlas. ConclusionsGreater emphasis should be placed on mHealth applications that robustly extend reach of EHR systems within resource-limited settings, as opposed to siloed mHealth applications. This is particularly important given that health information exchange infrastructure is yet to mature in many LMICs. The mUzima application demonstrates how this can be done at scale, as evidenced by its adoption across multiple countries and for numerous care domains

    Effects of single and integrated water, sanitation, handwashing, and nutrition interventions on child soil-transmitted helminth and Giardia infections: A cluster-randomized controlled trial in rural Kenya.

    No full text
    BackgroundHelminth and protozoan infections affect more than 1 billion children globally. Improving water quality, sanitation, handwashing, and nutrition could be more sustainable control strategies for parasite infections than mass drug administration, while providing other quality of life benefits.Methods and findingsWe enrolled geographic clusters of pregnant women in rural western Kenya into a cluster-randomized controlled trial (ClinicalTrials.gov NCT01704105) that tested 6 interventions: water treatment, improved sanitation, handwashing with soap, combined water treatment, sanitation, and handwashing (WSH), improved nutrition, and combined WSH and nutrition (WSHN). We assessed intervention effects on parasite infections by measuring Ascaris lumbricoides, Trichuris trichiura, hookworm, and Giardia duodenalis among children born to the enrolled pregnant women (index children) and their older siblings. After 2 years of intervention exposure, we collected stool specimens from 9,077 total children aged 2 to 15 years in 622 clusters, including 2,346 children in an active control group (received household visits but no interventions), 1,117 in the water treatment arm, 1,160 in the sanitation arm, 1,141 in the handwashing arm, 1,064 in the WSH arm, 1,072 in the nutrition arm, and 1,177 in the WSHN arm. In the control group, 23% of children were infected with A. lumbricoides, 1% with T. trichiura, 2% with hookworm, and 39% with G. duodenalis. The analysis included 4,928 index children (median age in years: 2) and 4,149 older siblings (median age in years: 5); study households had an average of 5 people, 90% had dirt floors. Compared to the control group, Ascaris infection prevalence was lower in the water treatment arm (prevalence ratio [PR]: 0.82 [95% CI 0.67, 1.00], p = 0.056), the WSH arm (PR: 0.78 [95% CI 0.63, 0.96], p = 0.021), and the WSHN arm (PR: 0.78 [95% CI 0.64, 0.96], p = 0.017). We did not observe differences in Ascaris infection prevalence between the control group and the arms with the individual interventions sanitation (PR: 0.89 [95% CI 0.73, 1.08], p = 0.228), handwashing (PR: 0.89 [95% CI 0.73, 1.09], p = 0.277), or nutrition (PR: 86 [95% CI 0.71, 1.05], p = 0.148). Integrating nutrition with WSH did not provide additional benefit. Trichuris and hookworm were rarely detected, resulting in imprecise effect estimates. No intervention reduced Giardia. Reanalysis of stool samples by quantitative polymerase chain reaction confirmed the reductions in Ascaris infections measured by microscopy in the WSH and WSHN groups. Trial limitations included imperfect uptake of targeted intervention behaviors, limited power to detect effects on rare parasite infections, and that it was not feasible to blind participants and sample collectors to treatment status. However, lab technicians and data analysts were blinded to treatment status. The trial was funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development.ConclusionsIntegration of improved water quality, sanitation, and handwashing could contribute to sustainable control strategies for Ascaris infections, particularly in similar settings with recent or ongoing deworming programs. Combining nutrition with WSH did not provide further benefits, and water treatment alone was similarly effective to integrated WSH. Our findings provide new evidence that drinking water should be given increased attention as a transmission pathway for Ascaris.Trial registrationClinicalTrials.gov NCT01704105

    Effects of single and integrated water, sanitation, handwashing, and nutrition interventions on child soil-transmitted helminth and Giardia infections: A cluster-randomized controlled trial in rural Kenya.

    Get PDF
    BackgroundHelminth and protozoan infections affect more than 1 billion children globally. Improving water quality, sanitation, handwashing, and nutrition could be more sustainable control strategies for parasite infections than mass drug administration, while providing other quality of life benefits.Methods and findingsWe enrolled geographic clusters of pregnant women in rural western Kenya into a cluster-randomized controlled trial (ClinicalTrials.gov NCT01704105) that tested 6 interventions: water treatment, improved sanitation, handwashing with soap, combined water treatment, sanitation, and handwashing (WSH), improved nutrition, and combined WSH and nutrition (WSHN). We assessed intervention effects on parasite infections by measuring Ascaris lumbricoides, Trichuris trichiura, hookworm, and Giardia duodenalis among children born to the enrolled pregnant women (index children) and their older siblings. After 2 years of intervention exposure, we collected stool specimens from 9,077 total children aged 2 to 15 years in 622 clusters, including 2,346 children in an active control group (received household visits but no interventions), 1,117 in the water treatment arm, 1,160 in the sanitation arm, 1,141 in the handwashing arm, 1,064 in the WSH arm, 1,072 in the nutrition arm, and 1,177 in the WSHN arm. In the control group, 23% of children were infected with A. lumbricoides, 1% with T. trichiura, 2% with hookworm, and 39% with G. duodenalis. The analysis included 4,928 index children (median age in years: 2) and 4,149 older siblings (median age in years: 5); study households had an average of 5 people, <10% had electricity access, and >90% had dirt floors. Compared to the control group, Ascaris infection prevalence was lower in the water treatment arm (prevalence ratio [PR]: 0.82 [95% CI 0.67, 1.00], p = 0.056), the WSH arm (PR: 0.78 [95% CI 0.63, 0.96], p = 0.021), and the WSHN arm (PR: 0.78 [95% CI 0.64, 0.96], p = 0.017). We did not observe differences in Ascaris infection prevalence between the control group and the arms with the individual interventions sanitation (PR: 0.89 [95% CI 0.73, 1.08], p = 0.228), handwashing (PR: 0.89 [95% CI 0.73, 1.09], p = 0.277), or nutrition (PR: 86 [95% CI 0.71, 1.05], p = 0.148). Integrating nutrition with WSH did not provide additional benefit. Trichuris and hookworm were rarely detected, resulting in imprecise effect estimates. No intervention reduced Giardia. Reanalysis of stool samples by quantitative polymerase chain reaction confirmed the reductions in Ascaris infections measured by microscopy in the WSH and WSHN groups. Trial limitations included imperfect uptake of targeted intervention behaviors, limited power to detect effects on rare parasite infections, and that it was not feasible to blind participants and sample collectors to treatment status. However, lab technicians and data analysts were blinded to treatment status. The trial was funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development.ConclusionsIntegration of improved water quality, sanitation, and handwashing could contribute to sustainable control strategies for Ascaris infections, particularly in similar settings with recent or ongoing deworming programs. Combining nutrition with WSH did not provide further benefits, and water treatment alone was similarly effective to integrated WSH. Our findings provide new evidence that drinking water should be given increased attention as a transmission pathway for Ascaris.Trial registrationClinicalTrials.gov NCT01704105

    Recent advances on the δ opioid receptor: from trafficking to function

    No full text
    corecore