10 research outputs found

    Inter-Tumor Heterogeneity-Melanomas Respond Differently to GM-CSF-Mediated Activation.

    Get PDF
    Granulocyte-monocyte colony stimulating factor (GM-CSF) is used as an adjuvant in various clinical and preclinical studies with contradictory results. These were attributed to opposing effects of GM-CSF on the immune or myeloid systems of the treated patients or to lack of optimal dosing regimens. The results of the present study point to inter-tumor heterogeneity as a possible mechanism accounting for the contrasting responses to GM-CSF incorporating therapies. Employing xenograft models of human melanomas in nude mice developed in our lab, we detected differential functional responses of melanomas from different patients to GM-CSF both in vitro as well as in vivo. Whereas cells of one melanoma acquired pro metastatic features following exposure to GM-CSF, cells from another melanoma either did not respond or became less malignant. We propose that inter-melanoma heterogeneity as manifested by differential responses of melanoma cells (and perhaps also of other tumor) to GM-CSF may be developed into a predictive marker providing a tool to segregate melanoma patients who will benefit from GM-CSF therapy from those who will not

    ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis.

    Get PDF
    In an ongoing effort to identify molecular determinants regulating melanoma brain metastasis, we previously identified Angiopoietin-like 4 (ANGPTL4) as a component of the molecular signature of such metastases. The aim of this study was to determine the functional significance of ANGPTL4 in the shaping of melanoma malignancy phenotype, especially in the establishment of brain metastasis. We confirmed that ANGPTL4 expression is significantly higher in cells metastasizing to the brain than in cells from the cutaneous (local) tumor from the same melanoma in a nude mouse xenograft model, and also in paired clinical specimens of melanoma metastases than in primary melanomas from the same patients. In vitro experiments indicated that brain-derived soluble factors and transforming growth factor β1 (TGFβ1) up-regulated ANGPTL4 expression by melanoma cells. Forced over-expression of ANGPTL4 in cutaneous melanoma cells promoted their ability to adhere and transmigrate brain endothelial cells. Over-expressing ANGPTL4 in cells derived from brain metastases resulted in the opposite effects. In vivo data indicated that forced overexpression of ANGPTL4 promoted the tumorigenicity of cutaneous melanoma cells but did not increase their ability to form brain metastasis. This finding can be explained by inhibitory activities of brain-derived soluble factors. Taken together these findings indicate that ANGPTL4 promotes the malignancy phenotype of primary melanomas of risk to metastasize to the brain

    CCR4 is a determinant of melanoma brain metastasis.

    Get PDF
    We previously identified the chemokine receptor CCR4 as part of the molecular signature of melanoma brain metastasis. The aim of this study was to determine the functional significance of CCR4 in melanoma brain metastasis. We show that CCR4 is more highly expressed by brain metastasizing melanoma cells than by local cutaneous cells from the same melanoma. Moreover, we found that the expression of CCR4 is significantly higher in paired clinical specimens of melanoma metastases than in samples of primary tumors from the same patients. Notably, the expression of the CCR4 ligands, Ccl22 and Ccl17 is upregulated at the earliest stages of brain metastasis, and precedes the infiltration of melanoma cells to the brain. In-vitro, CCL17 induced migration and transendothelial migration of melanoma cells. Functionally, human melanoma cells over-expressing CCR4 were more tumorigenic and produced a higher load of spontaneous brain micrometastasis than control cells. Blocking CCR4 with a small molecule CCR4 antagonist in-vivo, reduced the tumorigenicity and micrometastasis formation of melanoma cells. Taken together, these findings implicate CCR4 as a driver of melanoma brain metastasis

    Regeneration Enhances Metastasis: A Novel Role for Neurovascular Signaling in Promoting Melanoma Brain Metastasis

    Get PDF
    Neural repair after stroke involves initiation of a cellular proliferative program in the form of angiogenesis, neurogenesis, and molecular growth signals in the surrounding tissue elements. This cellular environment constitutes a niche in which regeneration of new blood vessels and new neurons leads to partial tissue repair after stroke. Cancer metastasis has similar proliferative cellular events in the brain and other organs. Do cancer and CNS tissue repair share similar cellular processes? In this study, we identify a novel role of the regenerative neurovascular niche induced by stroke in promoting brain melanoma metastasis through enhancing cellular interactions with surrounding niche components. Repair-mediated neurovascular signaling induces metastatic cells to express genes crucial to metastasis. Mimicking stroke-like conditions in vitro displays an enhancement of metastatic migration potential and allows for the determination of cell-specific signals produced by the regenerative neurovascular niche. Comparative analysis of both in vitro and in vivo expression profiles reveals a major contribution of endothelial cells in mediating melanoma metastasis. These results point to a previously undiscovered role of the regenerative neurovascular niche in shaping the tumor microenvironment and brain metastatic landscape

    The melanoma brain metastatic microenvironment: aldolase C partakes in shaping the malignant phenotype of melanoma cells - a case of inter-tumor heterogeneity.

    No full text
    Previous studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain-metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants. In the first variant, ALDOC overexpression promoted cell viability, adhesion to and transmigration through a layer of brain endothelial cells, and amplified brain micrometastasis formation. The cross-talk between this MBM variant and microglia cells promoted the proliferation and migration of the latter cells. In sharp contrast, ALDOC overexpression in the second brain-metastasizing melanoma variant reduced or did not affect the same malignancy features. In the third melanoma variant, ALDOC overexpression augmented certain characteristics of malignancy and reduced others. The analysis of biological functions and disease pathways in the ALDOC overexpressing variants clearly indicated that ALDOC induced the expression of tumor progression promoting genes in the first variant and antitumor progression properties in the second variant. Overall, these results accentuate the complex microenvironment interactions between microglia cells and MBM, and the functional impact of intertumor heterogeneity. Since intertumor heterogeneity imposes a challenge in the planning of cancer treatment, we propose to employ the functional response of tumors with an identical histology, to a particular drug or the molecular signature of this response, as a predictive indicator of response/nonresponse to this drug

    The Vicious Cycle of Melanoma-Microglia Crosstalk: Inter-Melanoma Variations in the Brain-Metastasis-Promoting IL-6/JAK/STAT3 Signaling Pathway.

    No full text
    Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas

    The Metastatic Microenvironment: Melanoma-Microglia Cross-Talk Promotes the Malignant Phenotype of Melanoma Cells.

    No full text
    Melanoma has the highest propensity to metastasize to the brain compared to other cancers, as brain metastases are found frequently high in patients who have prolonged survival with visceral metastasis. Once disseminated in the brain, melanoma cells communicate with brain resident cells that include astrocytes and microglia. Microglia cells are the resident macrophages of the brain, and are the main immunological cells in the CNS involved in neuroinflammation. Data on the interactions between brain metastatic melanoma cells and microglia and on the role of microglia-mediated neuroinflammation in facilitating melanoma brain metastasis is lacking. To elucidate the role of microglia in melanoma brain metastasis progression, we examined the bidirectional interactions between microglia and melanoma cells in the tumor microenvironment. We identified the molecular and functional modifications occurring in brain-metastasizing melanoma cells and microglia cells following the treatment of each cell type with supernatants of the counter cell type. Both cells induced alteration in gene expression programs, cell signaling and cytokine secretion in the counter cell type. Moreover, melanoma cells exerted significant morphological changes on microglia cells, enhanced proliferation, induced matrix metalloproteinase-2 (MMP-2) activation and cell migration. Microglia cells induced phenotypic changes in melanoma cells increasing their malignant phenotype: increased melanoma proliferation, MMP-2 activity, cell migration, brain endothelial penetration, and tumor cells ability to grow as spheroids in 3D cultures. Our work provides a novel insight into the bi-directional interactions between melanoma and micoglia cells, suggesting the contribution of microglia to melanoma brain metastasis formation. This article is protected by copyright. All rights reserved
    corecore