276 research outputs found

    New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy

    Get PDF
    We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion years. These objects, which include 13 spectroscopically confirmed SNe Ia at z > 1, were discovered during 14 epochs of reimaging of the GOODS fields North and South over two years with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HST-discovered SNe Ia, the full sample of 23 SNe Ia at z > 1 provides the highest-redshift sample known. Combined with previous SN Ia datasets, we measured H(z) at discrete, uncorrelated epochs, reducing the uncertainty of H(z>1) from 50% to under 20%, strengthening the evidence for a cosmic jerk--the transition from deceleration in the past to acceleration in the present. The unique leverage of the HST high-redshift SNe Ia provides the first meaningful constraint on the dark energy equation-of-state parameter at z >1. The result remains consistent with a cosmological constant (w(z)=-1), and rules out rapidly evolving dark energy (dw/dz >>1). The defining property of dark energy, its negative pressure, appears to be present at z>1, in the epoch preceding acceleration, with ~98% confidence in our primary fit. Moreover, the z>1 sample-averaged spectral energy distribution is consistent with that of the typical SN Ia over the last 10 Gyr, indicating that any spectral evolution of the properties of SNe Ia with redshift is still below our detection threshold.Comment: typos, references corrected, minor additions to exposition 82 pages, 17 figures, 6 tables. Data also available at: http://braeburn.pha.jhu.edu/~ariess/R06. Accepted, Astrophysical Journal vol. 656 for March 10, 200

    Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type Ia Supernova

    Get PDF
    We have measured the rest-frame B,V, and I-band light curves of a high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using HST and ground-based near-infrared detectors. A goal of this study is the measurement of the color excess, E_{B-I}, which is a sensitive indicator of interstellar or intergalactic dust which could affect recent cosmological measurements from high-redshift SNe Ia. Our observations disfavor a 30% opacity of SN Ia visual light by dust as an alternative to an accelerating Universe. This statement applies to both Galactic-type dust (rejected at the 3.4 sigma confidence level) and greyer dust (grain size > 0.1 microns; rejected at the 2.3 to 2.6 sigma confidence level) as proposed by Aguirre (1999). The rest-frame II-band light cur ve shows the secondary maximum a month after B maximum typical of nearby SNe Ia of normal luminosi ty, providing no indication of evolution as a function of redshift out to z~0.5. A n expanded set of similar observations could improve the constraints on any contribution of extragalactic dust to the dimming of high-redshift SNe Ia.Comment: Accepted to the Astrophysical Journal, 12 pages, 2 figure

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry

    A type III complement factor D deficiency: Structural insights for inhibition of the alternative pathway.

    Get PDF
    Abstract Background: Complement factor D (FD) is the rate-limiting enzyme of the alternative complement pathway. Previous reports of FD deficiency featured absent plasma FD (type I deficiency) and susceptibility to meningococcal infection. A new FD mutant, which is non-functional but fully expressed, was identified in a patient with invasive meningococcal disease. Objectives: We sought to investigate the molecular features of this novel FD mutant. Methods: We performed complement haemolytic assays, western blot analysis of serum FD and Sanger sequencing of the CFD gene. Recombinant mutant FD was assessed by in vitro catalytic assays, circular dichroism, thermal shift assays, esterolytic assays and surface plasmon resonance. Molecular dynamics simulation was used to visualise the structural changes in mutant FD. Results: A homozygous single-nucleotide variation of the CFD gene in the patient and their sibling resulted in an arginine to proline (R176P) substitution in FD. While R176P FD was stable and fully expressed in blood, it had minimal catalytic activity. Mutation R176P caused key FD-C3bB binding exosite loop 156-162 to lose its binding-competent conformation and stabilised the inactive conformation of FD. Consequently, R176P FD was unable to bind its natural substrate, C3bB. Neither patient nor sibling demonstrated the glucose homeostasis impairment that occurs in FD-null mice. Conclusions: Here, we report the first genetically confirmed functional, or type III, deficiency of an activating complement serine protease. This novel mechanism of FD inhibition can inform further development of alternative pathway inhibitors to treat common inflammatory diseases such as age-related macular degeneration

    Investigating the role of somatic sequencing platforms for phaeochromocytoma and paraganglioma in a large UK cohort.

    Get PDF
    Funder: NIHR Cambridge Biomedical Research CentreFunder: Gottfried and Julia Bangerter–Rhyner FoundationFunder: www.amend.org.ukFunder: Barts CharityFunder: Cambridge NIHR BRC Stratified Medicine Core Laboratory NGS HubFunder: Freiwillige Akademische GesellschaftOBJECTIVES: Phaeochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumours with malignant potential and a hereditary basis in almost 40% of patients. Germline genetic testing has transformed the management of PPGL enabling stratification of surveillance approaches, earlier diagnosis and predictive testing of at-risk family members. Recent studies have identified somatic mutations in a further subset of patients, indicating that molecular drivers at either a germline or tumour level can be identified in up to 80% of PPGL cases. The aim of this study was to investigate the clinical utility of somatic sequencing in a large cohort of patients with PPGL in the United Kingdom. DESIGN AND PATIENTS: Prospectively collected matched germline and tumour samples (development cohort) and retrospectively collected tumour samples (validation cohort) of patients with PPGL were investigated. MEASUREMENTS: Clinical characteristics of patients were assessed and tumour and germline DNA was analysed using a next-generation sequencing strategy. A screen for variants within 'mutation hotspots' in 68 human cancer genes was performed. RESULTS: Of 141 included patients, 45 (32%) had a germline mutation. In 37 (26%) patients one or more driver somatic variants were identified including 26 likely pathogenic or pathogenic variants and 19 variants of uncertain significance. Pathogenic somatic variants, observed in 25 (18%) patients, were most commonly identified in the VHL, NF1, HRAS and RET genes. Pathogenic somatic variants were almost exclusively identified in patients without a germline mutation (all but one), suggesting that somatic sequencing is likely to be most informative for those patients with negative germline genetic test results. CONCLUSIONS: Somatic sequencing may further stratify surveillance approaches for patients without a germline genetic driver and may also inform targeted therapeutic strategies for patients with metastatic disease

    Peripheral temperature gradient screening of high-Z impurities in optimised 'hybrid' scenario H-mode plasmas in JET-ILW

    Get PDF
    Screening of high-Z (W) impurities from the confined plasma by the temperature gradient at the plasma periphery of fusion-grade H-mode plasmas has been demonstrated in the JET-ILW (ITER-like wall) tokamak. Through careful optimisation of the hybrid-scenario, deuterium plasmas with sufficient heating power (greater than or similar to 32 MW), high enough ion temperature gradients at the H-mode pedestal top can be achieved for the collisional, neo-classical convection of the W impurities to be directed outwards, expelling them from the confined plasma. Measurements of the W impurity fluxes between and during edge-localised modes (ELMs) based on fast bolometry measurements show that in such plasmas there is a net efflux (loss) between ELMs but that ELMs often allow some W back into the confined plasma. Provided steady, high-power heating is maintained, this mechanism allows such plasmas to sustain high performance, with an average D-D neutron rate of similar to 3.2 x 10(16) s(-1) over a period of similar to 3 s, after an initial overshoot (equivalent to a D-T fusion power of similar to 9.4 MW), without an uncontrolled rise in W impurity radiation, giving added confidence that impurity screening by the pedestal may also occur in ITER, as has previously been predicted (Dux et al 2017 Nucl. Mater. Energy 12 28-35)

    Predictive JET current ramp-up modelling using QuaLiKiz-neural-network

    Get PDF
    This work applies the coupled JINTRAC and QuaLiKiz-neural-network (QLKNN) model on the ohmic current ramp-up phase of a JET D discharge. The chosen scenario exhibits a hollow T-e profile attributed to core impurity accumulation, which is observed to worsen with the increasing fuel ion mass from D to T. A dynamic D simulation was validated, evolving j, n(e), T-e, T-i, n(Be), n(Ni), and n(W) for 7.25 s along with self-consistent equilibrium calculations, and was consequently extended to simulate a pure T plasma in a predict-first exercise. The light impurity (Be) accounted for Z(eff) while the heavy impurities (Ni, W) accounted for Prad. This study reveals the role of transport on the Te hollowing, which originates from the isotope effect on the electron-ion energy exchange affecting T-i. This exercise successfully affirmed isotopic trends from previous H experiments and provided engineering targets used to recreate the D q-profile in T experiments, demonstrating the potential of neural network surrogates for fast routine analysis and discharge design. However, discrepancies were found between the impurity transport behaviour of QuaLiKiz and QLKNN, which lead to notable T-e hollowing differences. Further investigation into the turbulent component of heavy impurity transport is recommended

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
    corecore