8 research outputs found

    ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria

    Get PDF
    The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus. We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases—RsgA, RbgA, Era, HflX, and ObgE—as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria

    The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. In order to survive an increase in osmolarity, bacteria immediately take up potassium and small organic compounds, also referred to as compatible solutes. The second messenger c-di-AMP binds to several receptor proteins, most of which are involved in ion and potassium uptake, that help bacteria cope with osmotic stress. In this study, we identified OpuCA, the ATPase component of an uptake system for the compatible solute carnitine, as a cdi-AMP target protein in S. aureus and found that a strain overproducing c-di-AMP showed reduced carnitine uptake. The CBS domains of OpuCA bound to c-di-AMP, and a crystal structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS domains. Thus, c-di-AMP is involved in regulating both branches of osmoprotection (potassium uptake and compatible solute uptake), suggesting that c-di-AMP is a general osmotic stress regulato

    Neonatal Adaptation to Stress of Parturition and Dystocia

    No full text

    Connective Tissue, Skin, and Bone Disorders

    No full text
    corecore