65 research outputs found

    Low-frequency sensitivity of next generation gravitational wave detectors

    Get PDF
    Brand, J.F.J. van den [Promotor]Bulten, H.J. [Copromotor

    Bose-Einstein Correlations for Systems with Large Halo

    Get PDF
    Model-independent considerations are presented for the calculation of Bose-Einstein correlation functions and momentum distributions which describe boson-emitting systems containing a central part surrounded by a large halo. If the characteristic geometrical size of the halo is sufficiently large, the contributions of central part and the halo to the invariant momentum distribution are shown to be separable. The momentum-dependence of the intercept parameter of the correlation function plays a central role. Almost all high energy reactions including lepton-lepton, lepton hadron, hadron-hadron and nuclear reactions are shown to be interpretable as boson emitting systems with large halo. The results are applied to certain high energy heavy ion data at CERN SPS. New insights are obtained for the description of low transverse momentum enhancement of pions.Comment: Z. Phys. C in press, LaTeX, ReVTeX, 20 pages + 2 ps figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Subterranean ground motion studies for the Einstein Telescope

    No full text
    Seismic motion limits the low-frequency sensitivity of ground-based gravitational wave detectors. A conceptual design study into the feasibility of a future-generation gravitational wave observatory, coined the Einstein Telescope, has been completed. As part of this design phase, we performed a ground motion study to determine the seismic noise characteristics at various sites across the globe. This investigation focused on underground sites and encompassed a variety of geologies, including clay, salt, and hard rock, at 15 locations in nine European countries, the USA, and Japan. In addition, we analyzed data from the Virtual European Broadband Seismograph Network to characterize European seismic motion. We show that, in the region of interest for future-generation gravitational wave detectors (1-10 Hz), seismic motion is dominated by activity from anthropogenic sources. A number of sites were found that exhibited a reduction in seismic power of several orders of magnitude with respect to current detector sites, thus making it possible to set requirements for the Einstein Telescope seismic noise environment

    State observers and Kalman filtering for high performance vibration isolation systems

    No full text
    There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to present its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system. © 2014 AIP Publishing LLC

    Status of the Virgo project

    No full text
    We describe the present state and future evolution of the Virgo gravitational wave detector, realized by the Virgo Collaboration at the European Gravitational Observatory, in Cascina near Pisa in Italy. We summarize basic principles of the operation and the design features of the Virgo detector. We present the sensitivity evolution due to a series of intermediate upgrades called Virgo+ which is being completed this year and includes new monolithic suspensions. We describe the present scientific potential of the detector. Finally we discuss the plans for the second generation of the detector, called Advanced Virgo, introducing its new features, the expected sensitivity evolution and the scientific potential. © 2011 IOP Publishing Ltd

    Seismic attenuation technology for the Advanced Virgo gravitational wave detector

    Get PDF
    AbstractThe current interferometric gravitational wave detectors are being upgraded to what are termed ‘second generation’ devices. Sensitivities will be increased by an order of magnitude and these new instruments are expected to uncover the ïŹeld of gravitational astronomy. A main challenge in this endeavor is the mitigation of noise induced by seismic motion. Detailed studies with Virgo show that seismic noise can be reinjected into the dark fringe signal. For example, laser beam jitter and backscattered light limit the sensitivity of the interferometer.Here, we focus on seismic attenuators based on compact inverted pendulums in combination with geometric anti-prings to obtain 40 dB of attenuation above 4 Hz in six degrees of freedom. Low frequency resonances (< 0.5 Hz) are damped by using a control system based on input from LVDTs and geophones. Such systems are under development for the seismic attenuation of optical benches operated both in air and vacuum. The design and realization of the seismic attenuation system for the Virgo external injection bench, including its control scheme, will be discussed and stand-alone performance presented

    Seismic attenuation system for the external injection bench of the Advanced Virgo gravitational wave detector

    No full text
    In November 2011 a major upgrade of the Virgo gravitational wave detector was started. After these improvements the detector's sensitivity will have increased by an order of magnitude, increasing the expected event rate by 1

    Einstein telescope site selection: Seismic and gravity gradient noise

    Get PDF
    Gravity gradient noise generated by seismic displacements may be the limiting factor for the sensitivity of third-generation gravitational wave detectors at frequencies below 10 Hz. A finite element framework has been developed to calculate the soil response to various excitations. The accompanying gravity gradients as a result of the seismic displacement field can then be evaluated. The results of the gravity gradient noise are in good agreement with previous analytical results. Finally results of gravity gradient noise from a single pulse excitation of a homogenous medium are discussed for an underground detector
    • 

    corecore