309 research outputs found

    Structure of the NheA Component of the Nhe Toxin from Bacillus cereus: Implications for Function

    Get PDF
    The structure of NheA, a component of the Bacillus cereus Nhe tripartite toxin, has been solved at 2.05 Å resolution using selenomethionine multiple-wavelength anomalous dispersion (MAD). The structure shows it to have a fold that is similar to the Bacillus cereus Hbl-B and E. coli ClyA toxins, and it is therefore a member of the ClyA superfamily of α-helical pore forming toxins (α-PFTs), although its head domain is significantly enlarged compared with those of ClyA or Hbl-B. The hydrophobic ÎČ-hairpin structure that is a characteristic of these toxins is replaced by an amphipathic ÎČ-hairpin connected to the main structure via a ÎČ-latch that is reminiscent of a similar structure in the ÎČ-PFT Staphylococcus aureus α-hemolysin. Taken together these results suggest that, although it is a member of an archetypal α-PFT family of toxins, NheA may be capable of forming a ÎČ rather than an α pore

    Formation of Very Large Conductance Channels by Bacillus cereus Nhe in Vero and GH4 Cells Identifies NheA + B as the Inherent Pore-Forming Structure

    Get PDF
    The nonhemolytic enterotoxin (Nhe) produced by Bacillus cereus is a pore-forming toxin consisting of three components, NheA, -B and -C. We have studied effects of Nhe on primate epithelial cells (Vero) and rodent pituitary cells (GH4) by measuring release of lactate dehydrogenase (LDH), K+ efflux and the cytosolic Ca2+ concentration ([Ca2+]i). Plasma membrane channel events were monitored by patch-clamp recordings. Using strains of B. cereus lacking either NheA or -C, we examined the functional role of the various components. In both cell types, NheA + B + C induced release of LDH and K+ as well as Ca2+ influx. A specific monoclonal antibody against NheB abolished LDH release and elevation of [Ca2+]i. Exposure to NheA + B caused a similar K+ efflux and elevation of [Ca2+]i as NheA + B + C in GH4 cells, whereas in Vero cells the rate of K+ efflux was reduced by 50% and [Ca2+]i was unaffected. NheB + C had no effect on either cell type. Exposure to NheA + B + C induced large-conductance steps in both cell types, and similar channel insertions were observed in GH4 cells exposed to NheA + B. In Vero cells, NheA + B induced channels of much smaller conductance. NheB + C failed to insert membrane channels. The conductance of the large channels in GH4 cells was about 10 nS. This is the largest channel conductance reported in cell membranes under quasi-physiological conditions. In conclusion, NheA and NheB are necessary and sufficient for formation of large-conductance channels in GH4 cells, whereas in Vero cells such large-conductance channels are in addition dependent on NheC

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    Reconstructable final state kinematics and charge assignment in the reaction ppbar->ttbar allows tests of discrete strong interaction symmetries at high energy. We define frame dependent forward-backward asymmetries for the outgoing top quark in both the ppbar and ttbar rest frames, correct for experimental distortions, and derive values at the parton-level. Using 1.9/fb of ppbar collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the Fermilab Tevatron, we measure forward-backward top quark production asymmetries in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} = 0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references and change of tex

    Measurement of the W+W−W^+W^- Production Cross Section and Search for Anomalous WWγWW\gamma and WWZWWZ Couplings in ppˉp \bar p Collisions at s=1.96\sqrt{s} = 1.96 TeV

    Get PDF
    This Letter describes the current most precise measurement of the WW boson pair production cross section and most sensitive test of anomalous WWÎłWW\gamma and WWZWWZ couplings in ppˉp \bar p collisions at a center-of-mass energy of 1.96 TeV. The WWWW candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb−1^{-1} of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of 320±47320 \pm 47 events. The measured total cross section is σ(ppˉ→W+W−+X)=12.1±0.9(stat)−1.4+1.6(syst)\sigma (p \bar p \to W^+ W^- + X) = 12.1 \pm 0.9 \textrm{(stat)} ^{+1.6}_{-1.4} \textrm{(syst)} pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous WWÎłWW\gamma and WWZWWZ couplings.Comment: submitted to Phys. Rev. Let

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+ÎŒ+Ό−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0ÎŒ+Ό−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)ÎŒ+Ό−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+ÎŒ+Ό−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0ÎŒ+Ό−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕΌ+Ό−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Role of Toll-Like Receptor (TLR) 2 in Experimental Bacillus cereus Endophthalmitis

    Get PDF
    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known Gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2-/- mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≄4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to108 CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2-/- eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2-/- eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNÎł, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2-/- eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial ocular response to B. cereus endophthalmitis

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure

    Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for a new heavy charged vector boson Wâ€ČW^\prime decaying to an electron-neutrino pair in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96\unit{TeV}. The data were collected with the CDF II detector and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No significant excess above the standard model expectation is observed and we set upper limits on σ⋅B(Wâ€Č→eÎœ)\sigma\cdot{\cal B}(W^\prime\to e\nu). Assuming standard model couplings to fermions and the neutrino from the Wâ€ČW^\prime boson decay to be light, we exclude a Wâ€ČW^\prime boson with mass less than 1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
    • 

    corecore