654 research outputs found

    Genetic relationships among time of egg formation, clutch traits and traditional selection traits in laying hens

    Get PDF
    In a population of Rhode Island White hens heritability of egg formation, clutch characters and traditional selection traits as well as the genetic and phenotypic correlations between them were estimated via multitrait animal model. Over 1300 birds and about 4000 birds were recorded in two consecutive generations for oviposition time and traditional traits, respectively. The heritability estimates obtained for classical selection criteria: age at first egg (h2=0.42), egg weight (h2=0.50) and body weight (h2=0.42) were considerably higher than those for egg production traits: initial egg production (h2=0.22), clutch traits (h2 between 0.11 and 0.23) and oviposition time (h2 between 0.13 and 0.19). Both genetic and phenotypic correlations between clutch traits and traditional selection traits were low, except for initial egg production and maximal clutch length (rg=0.40 and rp=0.38). As expected, negative correlations were registered for number of clutches and average clutch length. It indicates an opportunity of selection aimed at improvement of egg production persistence by an increase in the average clutch size. Oviposition time was favourably correlated with traditional selection criteria

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding

    Charged particle decay of hot and rotating 88^{88}Mo nuclei in fusion-evaporation reactions

    Get PDF
    A study of fusion-evaporation and (partly) fusion-fission channels for the 88^{88}Mo compound nucleus, produced at different excitation energies in the reaction 48^{48}Ti + 40^{40}Ca at 300, 450 and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the Gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α\alpha-particles; they may be due both to pre-equilibrium emission and to reaction channels (such as Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the compound nucleus formation.Comment: 14 pages, 14 figure

    Intermediate-energy Coulomb excitation of 104 Sn: Moderate E2 strength decrease approaching 100 Sn

    Get PDF
    International audienceThe reduced transition probability B(E2)↑ of the first excited 2 + state in the nucleus 104 Sn was measured via Coulomb excitation in inverse kinematics at intermediate energies. A value of 0.173(28) e 2 b 2 was extracted from the absolute cross section on a Pb target. Feeding contributions in 104 Sn from higher lying states were estimated by a reference measurement of the stable 112 Sn. Corresponding only to a moderate decrease of excitation strength relative to the almost constant values observed in the proton-rich, even-A 106−114 Sn isotopes, present state-of-the-art shell-model predictions, which include proton and neutron excitations across the N = Z = 50 shell closures as well as standard polarization charges, underestimate the experimental findings

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Lifetime measurements of short-lived excited states, and shape changes in As 69 and Ge 66 nuclei

    Get PDF
    Background: The nuclear shape is a macroscopic feature of an atomic nucleus that is sensitive to the underlying nuclear structure in terms of collectivity and the interaction between nucleons. Therefore, the evolution of nuclear shapes has attracted many theoretical and experimental nuclear structure studies. The structure of the A≈70, N≈Z nuclei, lying far from the stability line, is interesting because a particularly strong proton-neutron correlation may occur here due to the occupation of the same orbits by nucleons of both types. In this region, different particle configurations drive a nucleus towards various deformed shapes: prolate, oblate, octupole, or nonaxial. These nuclear shapes change rapidly with nucleon number and also with angular momentum. This is reflected by a presence of different structures (bands) of excited states which exhibit a broad range of lifetimes. Purpose: The aim of this paper is to determine lifetimes of some high-spin excited states in As69 and Ge66 nuclei to examine the shape evolution in these neutron-deficient nuclei. Methods: Lifetimes of high-spin states in As69 and Ge66 have been measured by using the Doppler-shift attenuation technique with the GASP and recoil filter detector setup at the Laboratori Nazionali di Legnaro. The nuclei of interest were produced in the S32(95MeV)+0.8mg/cm2 Ca40 fusion-evaporation reaction. The strongest reaction channels 3p and α2p led to the As69 and Ge66 final nuclei, respectively. Using Îł-Îł-recoil coincidences we were able to determine very short lifetimes (in the femtosecond range) in the residual nuclei of interest. Results: In As69, the extracted lifetimes are τ=72 (-32, +45) fs for the 33/2+ state at 7897 keV and τ<85 fs for the 37/2+ state at 9820 keV. For the Ge66 case, the lifetime of the 11- state at 7130 keV is τ=122(±41) fs. Lifetimes in As69 and Ge66 reported in this paper have been measured for the first time in the present experiment. Conclusions: The results are discussed in the terms of deformation and shape evolution in As69 and Ge66. The quadrupole moments deduced from the measured lifetimes were compared with the cranked Woods-Saxon-Strutinsky calculations by means of the total Routhian surface method. It turns out that Band 3 in As69 shows an oblate-prolate shape transition, and above spin 33/2+ it corresponds to a prolate collective structure with ÎČ2≈0.27 and γ≈20. In turn, in Ge66 the negative-parity band built on the 7- state at 4205 keV corresponds to a triaxial shape with ÎČ2=0.33 and Îł=31. Analysis of the transitional quadrupole moments derived from the experimental and theoretical ones points to a significant change of deformation in the As69 and Ge66 nuclei with increasing rotational frequency

    Factors Associated With Referring Close Contacts to an App With Individually-Tailored Vaccine Information

    Get PDF
    Background: Infants too young to be fully vaccinated are vulnerable to potentially deadly influenza and pertussis infections. The cocooning strategy limits this risk by vaccinating those likely to interact with the infant and mother during this vulnerable time, such as close friends and family members. Distribution of accurate and accessible vaccine information through existing social networks could be an important tool in increasing vaccine confidence and coverage. Methods: We surveyed 1095 pregnant women from diverse prenatal care practices in Georgia and Colorado. These women were surveyed through a mobile app to assess vaccine intentions, attitudes, beliefs, norms, and levels of trust, and then presented brief individually-tailored educational videos about maternal and infant vaccines and the cocooning strategy. They were then given the opportunity to refer up to six contacts to enroll in the app and receive similar vaccine education. Results: Twenty-eight percent of these women referred at least one contact, with an average of 2.67 contacts per referring woman. Most referrals (93%) were partners, parents, siblings, relatives, or close friends. Attitudinal constructs significantly associated with increased likelihood of referring contacts included: intention to receive maternal influenza vaccine, perceived safety of maternal Tdap vaccine, perceived efficacy of maternal influenza vaccine, perceived susceptibility to and severity of influenza during pregnancy, and trust in vaccine information from the Centers for Disease Control and Prevention (CDC) and academic institutions. Uncertainty about infant vaccine intentions was associated with decreased likelihood of referring contacts. Conclusions: Pregnant women who valued vaccination and trusted vaccine information from academic institutions were more likely to refer an educational app about vaccines than those who did not. Further research is needed to determine the potential impact of this strategy on vaccine coverage when implemented on a large scale. Trial Registration: The survey informing this article was part of a randomized controlled trial funded by the National Institutes of Health [clinicaltrials.gov registration number NCT02898688]

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram
    • 

    corecore