15 research outputs found

    Epigenome-wide association study of lung function level and its change

    Get PDF
    Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults. In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96x10(-21) and pcombined=7.22x10(-50)). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65x10(-20)). Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.Peer reviewe

    Role of DNA methylation in the association of lung function with body mass index:a two-step epigenetic Mendelian randomisation study

    No full text
    Abstract Background: Low lung function has been associated with increased body mass index (BMI). The aim of this study was to investigate whether the effect of BMI on lung function is mediated by DNA methylation. Methods: We used individual data from 285,495 participants in four population-based cohorts: the European Community Respiratory Health Survey, the Northern Finland Birth Cohort 1966, the Swiss Study on Air Pollution and Lung Disease in Adults, and the UK Biobank. We carried out Mendelian randomisation (MR) analyses in two steps using a two-sample approach with SNPs as instrumental variables (IVs) in each step. In step 1 MR, we estimated the causal effect of BMI on peripheral blood DNA methylation (measured at genome-wide level) using 95 BMI-associated SNPs as IVs. In step 2 MR, we estimated the causal effect of DNA methylation on FEV₁, FVC, and FEV₁/FVC using two SNPs acting as methQTLs occurring close (in cis) to CpGs identified in the first step. These analyses were conducted after exclusion of weak IVs (F statistic < 10) and MR estimates were derived using the Wald ratio, with standard error from the delta method. Individuals whose data were used in step 1 were not included in step 2. Results: In step 1, we found that BMI might have a small causal effect on DNA methylation levels (less than 1% change in methylation per 1 kg/m² increase in BMI) at two CpGs (cg09046979 and cg12580248). In step 2, we found no evidence of a causal effect of DNA methylation at cg09046979 on lung function. We could not estimate the causal effect of DNA methylation at cg12580248 on lung function as we could not find publicly available data on the association of this CpG with SNPs. Conclusions: To our knowledge, this is the first paper to report the use of a two-step MR approach to assess the role of DNA methylation in mediating the effect of a non-genetic factor on lung function. Our findings do not support a mediating effect of DNA methylation in the association of lung function with BMI

    SERPINA1 methylation and lung function in tobacco-smoke exposed European children and adults:a meta-analysis of ALEC population-based cohorts

    No full text
    Abstract Background: The pathophysiological role of SERPINA1 in respiratory health may be more strongly determined by the regulation of its expression than by common genetic variants. A family based study of predominantly smoking adults found methylation at two Cytosine-phosphate-Guanine sites (CpGs) in SERPINA1 gene to be associated with chronic obstructive pulmonary disease risk. The objective of this study was to confirm the association of lung function with SERPINA1 methylation in general population samples by testing a comprehensive set of CpGs in the SERPINA gene cluster. We considered lung function level and decline in adult smokers from three European population-based cohorts and lung function level and growth in tobacco-smoke exposed children from a birth cohort. Methods: DNA methylation using Illumina Infinium Human Methylation 450 k and EPIC beadchips and lung function were measured at two time points in 1076 SAPALDIA, ECRHS and NFBC adult cohort participants and 259 ALSPAC children. Associations of methylation at 119 CpG sites in the SERPINA gene cluster (PP4R4-SERPINA13P) with lung functions and circulating alpha-1-antitripsin (AAT) were assessed using multivariable cross-sectional and longitudinal regression models. Results: Methylation at cg08257009 in the SERPINA gene cluster, located 32 kb downstream of SERPINA1, not annotated to a gene, was associated with FEV1/FVC at the Bonferroni corrected level in adults, but not in children. None of the methylation signals in the SERPINA1 gene showed associations with lung function after correcting for multiple testing. Conclusions: The results do not support a role of SERPINA1 gene methylation as determinant of lung function across the life course in the tobacco smoke exposed general population exposed

    Cumulative occupational exposures and lung-function decline in two large general-population cohorts

    No full text
    Rationale: Few longitudinal studies have assessed the relationship between occupational exposures and lung-function decline in the general population with a sufficiently long follow-up. Objectives: To examine the potential association in two large cohorts: The ECRHS (European Community Respiratory Health Survey) and the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults). Methods: General-population samples of individuals aged 18 to 62 were randomly selected in 1991-1993 and followed up approximately 10 and 20 years later. Spirometry (without bronchodilation) was performed at each visit. Coded complete job histories during follow-up visits were linked to a job-exposure matrix, generating cumulative exposure estimates for 12 occupational exposures. Forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were jointly modeled in linear mixed-effects models, fitted in a Bayesian framework, taking into account age and smoking. Results: A total of 40,024 lung-function measurements from 17,833 study participants were analyzed. We found accelerated declines in FEV1 and the FEV1/FVC ratio for exposure to biological dust, mineral dust, and metals (FEV1 =-15.1 ml, -14.4 ml, and -18.7 ml, respectively; and FEV1/FVC ratio =-0.52%,-0.43%, and-0.36%, respectively; per 25 intensity-years of exposure). These declines were comparable in magnitude with those associated with long-term smoking. No effect modification by sex or smoking status was identified. Findings were similar between the ECRHS and the SAPALDIA cohorts. Conclusions: Our results greatly strengthen the evidence base implicating occupation, independent of smoking, as a risk factor for lung-function decline. This highlights the need to prevent or control these exposures in the workplace

    Restrictive spirometry pattern is associated with low physical activity levels. A population based international study

    Get PDF
    Introduction: Restrictive spirometry pattern is an under-recognised disorder with a poor morbidity and mortality prognosis. We compared physical activity levels between adults with a restrictive spirometry pattern and with normal spirometry. Methods: Restrictive spirometry pattern was defined as a having post-bronchodilator FEV1/FVC ≥ Lower Limit of Normal and a FVC<80% predicted in two population-based studies (ECRHS-III and SAPALDIA3). Physical activity was measured using the International Physical Activity Questionnaire. The odds of having low physical activity (<1st study-specific tertile) was evaluated using adjusted logistic regression models. Results: Subjects with a restrictive spirometry pattern (n = 280/4721 in ECRHS, n = 143/3570 in SAPALDIA) reported lower levels of physical activity than those with normal spirometry (median of 1770 vs 2253 MET·min/week in ECRHS, and 3519 vs 3945 MET·min/week in SAPALDIA). Subjects with a restrictive spirometry pattern were more likely to report low physical activity (meta-analysis odds ratio: 1.41 [95%CI 1.07–1.86]) than those with a normal spirometry. Obesity, respiratory symptoms, co-morbidities and previous physical activity levels did not fully explain this finding. Conclusion: Adults with a restrictive spirometry pattern were more likely to report low levels of physical activity than those with normal spirometry. These results highlight the need to identify and act on this understudied but prevalent condition.The present analyses are part of the Ageing Lungs in European Cohorts (ALEC) Study (www.alecstudy.org), which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 633212. The local investigators and funding agencies for the European Community Respiratory Health Survey (ECRHS II and ECRHS III) are reported in the Supplementary Material. SAPALDIA is funded by the National Science Foundation Grant Nr. 33CS30-177506. Elaine Fuertes was funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Individual Fellowship scheme (H2020-MSCA-IF-2015; proposal number 704268). ISGlobal is a member of CERCA Programme/Generalitat de Catalunya

    Cumulative Occupational Exposures and Lung-Function Decline in Two Large General-Population Cohorts.

    Get PDF
    Rationale: Few longitudinal studies have assessed the relationship between occupational exposures and lung-function decline in the general population with a sufficiently long follow-up.Objectives: To examine the potential association in two large cohorts: the ECRHS (European Community Respiratory Health Survey) and the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults).Methods: General-population samples of individuals aged 18 to 62 were randomly selected in 1991-1993 and followed up approximately 10 and 20 years later. Spirometry (without bronchodilation) was performed at each visit. Coded complete job histories during follow-up visits were linked to a job-exposure matrix, generating cumulative exposure estimates for 12 occupational exposures. Forced expiratory volume in 1 second (FEV &lt;sub&gt;1&lt;/sub&gt; ) and forced vital capacity (FVC) were jointly modeled in linear mixed-effects models, fitted in a Bayesian framework, taking into account age and smoking.Results: A total of 40,024 lung-function measurements from 17,833 study participants were analyzed. We found accelerated declines in FEV &lt;sub&gt;1&lt;/sub&gt; and the FEV &lt;sub&gt;1&lt;/sub&gt; /FVC ratio for exposure to biological dust, mineral dust, and metals (FEV &lt;sub&gt;1&lt;/sub&gt; = -15.1 ml, -14.4 ml, and -18.7 ml, respectively; and FEV &lt;sub&gt;1&lt;/sub&gt; /FVC ratio = -0.52%, -0.43%, and -0.36%, respectively; per 25 intensity-years of exposure). These declines were comparable in magnitude with those associated with long-term smoking. No effect modification by sex or smoking status was identified. Findings were similar between the ECRHS and the SAPALDIA cohorts.Conclusions: Our results greatly strengthen the evidence base implicating occupation, independent of smoking, as a risk factor for lung-function decline. This highlights the need to prevent or control these exposures in the workplace
    corecore