44 research outputs found

    A SUSY A4 model for fermion masses and mixings

    Full text link
    We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of A4. The top quark Yukawa interaction is present at the renormalizable level in the superpotential while all the other Yukawa interactions arise only at higher orders. We study the Higgs potential and show that it can potentially solve the so called vacuum alignment problem. The leading order predictions are not spoiled by subleading corrections.Comment: version accepted in JHEP, Z3xZ2 changed in Z3xZ4, typos in table corrected, references adde

    A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing

    Full text link
    We present a see-saw A4A_4 model for Tri-Bimaximal mixing which is based on a very economical flavour symmetry and field content and still possesses all the good features of A4A_4 models. In particular the charged lepton mass hierarchies are determined by the A4×Z4A_4\times Z_4 flavour symmetry itself without invoking a Froggatt-Nielsen U(1) symmetry. Tri-Bimaximal mixing is exact in leading order while all the mixing angles receive corrections of the same order in next-to-the-leading approximation. As a consequence the predicted value of θ13\theta_{13} is within the sensitivity of the experiments which will take data in the near future. The light neutrino spectrum, typical of A4A_4 see-saw models, with its phenomenological implications, also including leptoproduction, is studied in detail.Comment: 20 pages, 2 figure

    Embedding A4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy

    Get PDF
    We address two fundamental aspects of flavor physics: the mass hierarchy and the large lepton mixing angles. On one side, left-right flavor symmetry realizes the democratic mass matrix patterns and explains why one family is much heavier than the others. On the other side, discrete flavor symmetry such as A4 leads to the observed tribimaximal mixing for the leptons. We show that, by explicitly breaking the left-right flavor symmetry into the diagonal A4, it is possible to explain both the observed charged fermion mass hierarchies and quark and lepton mixing angles. In particular we predict a heavy 3rd family, the tribimaximal mixing for the leptons, and we suggest a possible origin of the Cabibbo and other mixing angles for the quarks.Comment: 9 pages, uses revtex4 and axodraw.st

    Tri-Bimaximal Lepton Mixing and Leptogenesis

    Get PDF
    In models with flavour symmetries added to the gauge group of the Standard Model the CP-violating asymmetry necessary for leptogenesis may be related with low-energy parameters. A particular case of interest is when the flavour symmetry produces exact Tri-Bimaximal lepton mixing leading to a vanishing CP-violating asymmetry. In this paper we present a model-independent discussion that confirms this always occurs for unflavoured leptogenesis in type I see-saw scenarios, noting however that Tri-Bimaximal mixing does not imply a vanishing asymmetry in general scenarios where there is interplay between type I and other see-saws. We also consider a specific model where the exact Tri-Bimaximal mixing is lifted by corrections that can be parametrised by a small number of degrees of freedom and analyse in detail the existing link between low and high-energy parameters - focusing on how the deviations from Tri-Bimaximal are connected to the parameters governing leptogenesis.Comment: 29 pages, 6 figures; version 2: references added, minor correction

    A See-Saw S4S_4 model for fermion masses and mixings

    Full text link
    We present a supersymmetric see-saw S4S_4 model giving rise to the most general neutrino mass matrix compatible with Tri-Bimaximal mixing. We adopt the S4×Z5S_4\times Z_5 flavour symmetry, broken by suitable vacuum expectation values of a small number of flavon fields. We show that the vacuum alignment is a natural solution of the most general superpotential allowed by the flavour symmetry, without introducing any soft breaking terms. In the charged lepton sector, mass hierarchies are controlled by the spontaneous breaking of the flavour symmetry caused by the vevs of one doublet and one triplet flavon fields instead of using the Froggatt-Nielsen U(1) mechanism. The next to leading order corrections to both charged lepton mass matrix and flavon vevs generate corrections to the mixing angles as large as O(λC2){\cal O}(\lambda_C^2). Applied to the quark sector, the symmetry group S4×Z5S_4\times Z_5 can give a leading order VCKMV_{CKM} proportional to the identity as well as a matrix with O(1){\cal O}(1) coefficients in the Cabibbo 2×22\times 2 submatrix. Higher order corrections produce non vanishing entries in the other VCKMV_{CKM} entries which are generically of O(λC2){\cal O}(\lambda_C^2).Comment: 30 pages, 3 figures, minor changes to match the published versio

    Towards Minimal S4 Lepton Flavor Model

    Get PDF
    We study lepton flavor models with the S4S_4 flavor symmetry. We construct simple models with smaller numbers of flavon fields and free parameters, such that we have predictions among lepton masses and mixing angles. The model with a S4S_4 triplet flavon is not realistic, but we can construct realistic models with two triplet flavons, or one triplet and one doublet flavons.Comment: 18 pages, 4 figures, references are adde

    Bilinear R-parity violation with flavor symmetry

    Get PDF
    Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry A4A_4 with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles θ13\theta_{13} and θ23\theta_{23} in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.Comment: 16 pages, 3 figures. Extended version, as published in JHE

    Strong coupling, discrete symmetry and flavour

    Full text link
    We show how two principles - strong coupling and discrete symmetry - can work together to generate the flavour structure of the Standard Model. We propose that in the UV the full theory has a discrete flavour symmetry, typically only associated with tribimaximal mixing in the neutrino sector. Hierarchies in the particle masses and mixing matrices then emerge from multiple strongly coupled sectors that break this symmetry. This allows for a realistic flavour structure, even in models built around an underlying grand unified theory. We use two different techniques to understand the strongly coupled physics: confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both approaches yield equivalent results and can be represented in a clear, graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    The 3-3-1 model with S_4 flavor symmetry

    Full text link
    We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge \mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
    corecore