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Abstract

In models with flavour symmetries added to the gauge group of the Standard Model the CP-violating
asymmetry necessary for leptogenesis may be related with low-energy parameters. A particular case of
interest is when the flavour symmetry produces exact Tri/Bi-maximal lepton mixing leading to a vanishing
CP-violating asymmetry. In this paper we present a model-independent discussion that confirms this always
occurs for unflavoured leptogenesis in type I see-saw scenarios, noting however that Tri/Bi-maximal mixing
does not imply a vanishing asymmetry in general scenarios where there is interplay between type I and
other see-saws. We also consider a specific model where the exact Tri/Bi-maximal mixing is lifted by
corrections that can be parametrised by a small number of degrees of freedom and analyse in detail the
existing link between low and high-energy parameters — focusing on how the deviations from Tri/Bi-
maximal are connected to the parameters governing leptogenesis.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Results from neutrino oscillation experiments [1] have firmly established that neutrinos have
tiny but non-zero masses. From a theoretical perspective the smallness of neutrino masses can
be well understood within the see-saw mechanism [2], in which the Standard Model (SM) is
extended by adding new heavy states. Light neutrino masses are generated through effective op-
erators which are typically suppressed by the masses of the states giving rise to the see-saw.
In type I see-saw the extra states are right-handed (RH) neutrinos with large Majorana masses.
Apart from providing an explanation for the origin of neutrino masses, the mechanism contains
all the necessary ingredients for a dynamical generation of a cosmic lepton asymmetry through
the decays of the heavy singlet neutrinos (leptogenesis): (a) Lepton number violation arising
from the Majorana mass terms of the new fermionic states; (b) CP-violating sources from com-
plex Yukawa couplings; (c) Departure from thermal equilibrium in the hot primeval plasma at
the time the singlet neutrinos start decaying. This lepton asymmetry is then reprocessed into a
baryon asymmetry through B + L violating anomalous electroweak processes [3] thus yield-
ing an explanation to the origin of the baryon asymmetry of the Universe [4] i.e. baryogenesis
through leptogenesis (for a recent review see [5]).

The structure of mixing in the leptonic sector suggested by experimental data is in sharp
contrast with the small mixing that characterises the quark sector. Observations indicate that
solar neutrino oscillation is described by a large but non-maximal mixing angle, atmospheric
neutrino oscillation is described by maximal or nearly-maximal angle, and reactor data puts a
small upper bound on the third angle [6–8]. This mixing pattern is well described by the so-
called Tri/Bi-maximal (TB) scheme [9] which corresponds to a unitary matrix of the form

UTB =
( √

2/3 1/
√

3 0
−1/

√
6 1/

√
3 −1/

√
2

−1/
√

6 1/
√

3 +1/
√

2

)
, (1)

and to the following mixing angles:

sin2 θTB
13 = 0, sin2 θTB

23 = 1/2, sin2 θTB
12 = 1/3. (2)

This particular mixing structure can be interpreted as a signal of an underlying symmetry1

and has motivated a great deal of studies aiming to determine the possible flavour symmetry re-
sponsible for such a pattern. A large amount of discrete and continuous symmetries have been
considered [11–43] and among them discrete non-Abelian ones have been found to be partic-
ularly interesting as they can more naturally lead to the required pattern. In the realization of
explicit models, a general feature is the breaking of the flavour symmetry: this is a well-known
result of a no-go theorem [16,44] that applies in the vast majority of relevant cases; it could be
evaded, for example using light Higgs fields charged under the flavour symmetry, but inconsis-
tencies related to flavour-changing neutral current or lepton-flavour violating processes could
appear. On the contrary, allowing only heavy Higgs fields charged under the flavour symmetry,
it is possible to avoid these dangerous effects [45].

Global fits [7] to the data provides a subtle hint of a deviation from the TB scheme and
therefore it is desirable if the flavour symmetry predicts TB at leading order (LO) and allows
perturbations at higher orders. It is possible to constrain the amount of these corrections by com-
paring the TB value of the mixing angles to their experimental measurements: the solar angle is

1 For a different approach see [10].
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known with the lowest relative error and as a result it fixes the upper bound of the deviations at
about 0.05. Avoiding any parameter tuning or particular relations among the deviations, we ex-
pect that the other LO mixing angles are perturbed by quantities of the same order of magnitude:
in particular the corrected θ13 is expected to be non-vanishing, but very small.2

In order to explain the baryon asymmetry of the Universe by leptogenesis, CP violation in
the leptonic sector is needed. In principle it can be argued that leptogenesis is supported by
any observation of CP violation in the leptonic sector, e.g. in neutrino oscillation experiments.
However, since generically the baryon asymmetry is insensitive to the low-energy CP-violating
phases [46,47] a definitive conclusion cannot be established from such an observation. In con-
trast, in models based on flavour symmetries that predict the TB mixing pattern, the parameter
space is further constrained and as a result one could expect, quite generically, some link between
low-energy observables and leptogenesis. As pointed out in [33], in the context of an A4 flavour
symmetry model with type I see-saw the CP-violating asymmetry (εNα ) vanishes in the limit of
exact TB mixing, with leptogenesis becoming viable only when deviations from this pattern are
taken into account. The explicit structure of the corrections responsible for these deviations are
model-dependent and therefore whether a connection between εNα and low-energy parameters
can be established will depend on the particular realization.

In this paper we extend upon the work in [33]. In particular, we study the viability of lep-
togenesis in the context of models based on an arbitrary flavour symmetry leading to the TB
lepton mixing pattern through the see-saw mechanism. When there is only type I see-saw and
independently of the nature of the underlying symmetry, we conclude that εNα = 0 in the limit
of exact TB mixing or any other exact mixing schemes where the mixing matrix consists purely
of numbers — such as Bi-maximal mixing [48], golden-ratio mixing [49] and some (but not all)
cases of Tri-maximal mixing [50,51]. Under these conditions, only deviations from the flavour
symmetry imposed pattern yield εNα �= 0. It is important to note that this result is not in general
valid in the presence of other types of see-saw (e.g. with the interplay of type I and type II).

Following from the model-independent proof we consider particular cases. We check our
result by considering several models discussed in the literature. Finally, we also take a specific
simple A4 flavour model [39], where low-energy observables arising from TB deviations can be
linked to the CP-violating asymmetry in a straightforward manner and analyse it in more detail.

Our discussion will be entirely devoted to “unflavoured” leptogenesis scenarios: in the frame-
work of flavour symmetry models predicting TB mixing the heavy singlet neutrinos typically
have masses above 1013 GeV and for T � 1012 GeV lepton flavours are indistinguishable
[52,53].

This paper is organised as follows: in Section 2 we fix our notation and briefly comment upon
some generic aspects of leptogenesis. For completeness of our results, in Section 3 we present a
brief analysis of randomly generated TB mixing and its implications for the CP-violating asym-
metry. We turn to the main subject of this paper in Section 4, showing that an exact mixing
scheme enforced by a flavour symmetry in scenarios with just type I see-saw leads to a vanish-
ing CP-violating asymmetry. Leptogenesis becomes potentially viable only when higher-order
flavour symmetry corrections lift the pattern — or otherwise if other types of see-saw (e.g.
type II) are also present. In Section 5 we confirm our model-independent results in particular
realizations, and in Section 6 we analyse in detail a specific model in which low-energy parame-

2 For an alternative proposal see [43].



D. Aristizabal Sierra et al. / Nuclear Physics B 827 (2010) 34–58 37
ters and the CP-violating asymmetry are directly related in a simple way. Finally in Section 7 we
conclude by summarizing our results.

2. The basic framework

In this section we will establish both the notation and a choice of a convenient basis. Let
us consider the leptonic part of the SM Lagrangian extended with three fermionic heavy sin-
glets Nα

3

−L = (Y )ijLiH�c
j + (λ)iαLiH̃Nα + 1

2
(MR)αβ

(
Nc

α

)T
Nβ + h.c. (3)

Here Li are the lepton SU(2) doublets, �c
i are the complex conjugate charged lepton SU(2)

singlets and H (H̃ = iσ2H
∗) is the Higgs SU(2) doublet. Latin indices i, j, . . . label lepton

flavour, whereas Greek indices α,β, . . . denote RH species. Y , λ and MR are 3 × 3 matrices in
flavour space.

At energy scales well below the RH neutrino masses, light neutrino masses are generated via
effective operators. The effective Majorana neutrino mass matrix is

mν = −mDM−1
R mT

D, (4)

where mD = λv/
√

2 (v � 246 GeV). We then consider the unitary matrices U�, U�c and Uν ,
which diagonalise the charged lepton and neutrino mass matrices:

m̂� = U
†
� YU�c

v√
2
, m̂ν = UT

ν mνUν, (5)

where the “ ˆ” refers to a diagonal matrix. The lepton mixing matrix is defined by U� and Uν :

U = (U�)
†Uν. (6)

From now on we will assume that in the basis in which the charged lepton mass matrix is diago-
nal, mν is exactly diagonalised by the TB mixing matrix UTB and therefore

m̂ν = DUT
TBmνUTBD, (7)

where D accounts for the low-energy Majorana phases

D = diag
(
eiϕ1, eiϕ2 ,1

)
. (8)

In general mD as well as MR (MR = MT
R ) are complex matrices which can be diagonalised as

follows

m̂D = U
†
LmDUR,

M̂R = V T
R MRVR, (9)

with UL,UR,VR 3 × 3 unitary matrices, characterised in general by 3 rotation angles and 6
phases.

According to Eq. (9) the effective neutrino mass matrix in (4) can be written as

mν = −ULm̂D

(
U

†
RVR

)
M̂−1

R

(
V T

R U∗
R

)
m̂DUT

L . (10)

3 The subsequent analysis is done for three RH neutrinos, but it can be generalised to an arbitrary number with the
conclusions being independent of it.
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The requirement of having exact TB diagonalisation can be written either in terms of constraints
over the light neutrino mass matrix entries, namely

mν12 = mν13 ,

mν22 = mν33 ,

mν11 = mν22 + mν23 − mν12, (11)

or, according to Eqs. (7) and (10), requiring that

m̂ν = −D
(
UT

TBUL

)
m̂D

(
U

†
RVR

)
M̂−1

R

(
V T

R U∗
R

)
m̂D

(
UT

L UTB
)
D (12)

is diagonal and real. It is useful to introduce the notation of the Dirac neutrino mass matrix in the
basis in which the RH neutrino mass matrix M̂R is real and diagonal:

mR
D ≡ mDVR. (13)

2.1. General remarks on leptogenesis

As mentioned in the introduction, singlet neutrinos in flavour symmetry models typically have
masses above 1013 GeV. Thus, within these frameworks leptogenesis proceeds at temperatures
at which lepton flavour effects can be completely neglected. In the standard thermal leptogenesis
scenario singlet neutrinos Nα are produced by scattering processes after inflation. Subsequent
out-of-equilibrium decays of these heavy states generate a CP-violating asymmetry given by
[5,54]

εNα = 1

4v2π(m
R†
D mR

D)αα

∑
β �=α

Im
[((

m
R†
D mR

D

)
βα

)2]
f (zβ), (14)

where zβ = M2
β/M2

α and the loop function can be expressed as

f (zβ) = √
zβ

[
2 − zβ

1 − zβ

− (1 + zβ) log

(
1 + zβ

zβ

)]
. (15)

Depending on the singlet neutrino mass spectrum the loop function can be further simplified. In
the hierarchical limit (Mα � Mβ ) this function becomes

f (zβ) → − 3

2
√

zβ

, (16)

whereas in the case of an almost degenerate heavy neutrino spectrum (zβ = 1 + δβ , δβ � 1) it
can be rewritten as

f (1 + δβ) � − 1

δβ

. (17)

In any case, as can be seen from Eq. (14), whether the CP-violating asymmetry vanishes will be
determined by the Yukawa coupling combination m

R†
D mR

D .

3. CP asymmetry and exact TB mixing without any underlying flavour symmetry

While the TB mixing pattern can be well understood as a consequence of an underlying flavour
symmetry, in principle it might be that it arises from a random set of parameters (though quite un-
likely). For completeness, in this section we consider this possibility and study the consequences
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on the CP-violating asymmetry. Neutrino mixing angles are fixed to satisfy the TB mixing pat-
tern and in addition to the measured mass squared differences we have a set of eight constraints
on the parameter space: the TB mixing condition enforces the relations in Eq. (11), yielding six
constraints (from the real and imaginary parts of the mass matrix entries); the atmospheric and
solar mass scales provide the remaining two.

To determine the effect of such constraints on εNα it is practical to use a parametrisation
of mD that ensures that the TB mixing and the correct neutrino masses are obtained. In the
basis in which the RH neutrino mass matrix is diagonal and real it is convenient to introduce
the orthogonal complex matrix R defined by the so-called Casas–Ibarra parametrisation [55],
namely

R∗ = (m̂ν)
−1/2UT mR

D(M̂R)−1/2. (18)

All low-energy observables are contained in the leptonic mixing matrix U and in the diagonal
and real light neutrino mass matrix m̂ν . The matrix R turns out to be very useful in expressing
the CP-violating asymmetry parameter. Considering for simplicity the case of hierarchical RH
neutrinos (M1 � M2 � M3 — thus validating the approximation in Eq. (16)), Eq. (14) can be
rewritten as

εNα = − 3Mα

8πv2

Im[∑j m2
jR

2
jα]∑

j mj |Rjα|2 , (19)

where mj ≡ (m̂ν)jj . Once the RH neutrino mass spectrum and low-energy observables are fixed,
random values of mR

D correspond to random values of R. It is shown by Eq. (19) that leptoge-
nesis is completely insensitive to low-energy lepton mixing and CP-violating phases [46]4 and
therefore the viability of leptogenesis is not at all related with any accidental mixing pattern
considered. The CP-violating asymmetry is determined by the values of the entries of R which
are arbitrary in the absence of any flavour symmetry, and consequently εNa �= 0 in general and
its absolute value depends upon the heavy fermionic singlet masses, the light neutrino masses
and R.

To illustrate this point we consider the case in which only N1 decays are relevant for the
generation of a lepton asymmetry. We assume normal hierarchy for the light neutrino spectrum
and a simple R = R13(ρ13) with ρ13 = ω + iσ (i.e. R is a ρ13 rotation matrix). Under these
assumptions the CP-violating asymmetry in Eq. (19) becomes

εN1 = −
3M1

√
�m2

atm

2πv2

cosω sinhσ√
cosh 2σ − cos 2ω

. (20)

From Fig. 1 it can be seen that barring the cases ω = π/2 and/or σ = 0 the CP-violating asymme-
try does not vanish and its values are well within the range required for successful leptogenesis,
regardless of the mixing pattern.

4. Implications of flavour symmetries on the CP asymmetry

We consider now the case in which an underlying flavour symmetry enforces an exact mixing
pattern. It will be evident throughout the proof that it holds for any mixing pattern where the
mixing matrix consists purely of numbers, but we will assume TB mixing for definiteness.

4 This statement is in general also true in flavoured leptogenesis [47].
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Fig. 1. CP-violating asymmetry as a function of the angle ω for different values of σ . M1 is fixed to 1013 GeV and
�m2

atm to 2.39 × 10−3 eV2 [8] (see the text for further details).

Within the case considered the transformation properties of Li and Nα under the flavour
symmetry group (Gf ) determine the structure of mD and MR (which are no longer arbitrary).
Indeed, these matrices can be regarded as form-diagonalisable matrices [44], i.e. the parameters
which determine their eigenvalues are completely independent from the parameters that define
their diagonalising matrices. Accordingly, vanishing off-diagonal elements of m̂ν in Eq. (12) can
arise only if

UT
TBUL = PLODi

and U
†
RVR = O

†
Di

PRORm, (21)

where PL,R = diag(eiα
R,L
1 , eiα

R,L
2 , eiα

R,L
3 ) whereas ODi

and ORm are respectively unitary and
orthogonal matrices that arbitrarily rotate the i and m degenerate eigenvalues of mD and MR such
that if mD (MR) has no degenerate eigenvalues ODi

= 1 (ORm = 1). Note that the requirement
of having canonical kinetic terms in addition to preserving the m-fold degeneracy of the RH
neutrino mass matrix enforce ORm to be real. Although ODi

and ORm do not have any effect in
Eq. (12) they do affect the structure of UL,R and VR and correspondingly of mD (see Eq. (9)). VR

can be defined in such a way that M̂R is real, and the phases contained in m̂D are now denoted by
γi and must obey: ϕi +αR

i +αL
i +γi = 2kπ and αR

3 +αL
3 +γ3 = 2nπ . It is easy to understand the

conditions given in Eq. (21) by the use of a reductio ad absurdum. Let us consider for simplicity
the case without any degeneracy in the eigenvalues of m̂D and M̂R : ODi

= 1 and ORm = 1. If
the products UT

TBUL and U
†
RVR are not diagonal, but simply unitary matrices with non-vanishing

off-diagonal entries, then the right-hand side of Eq. (12) is in general a matrix whose entries are
linear combinations of the mass eigenvalues of m̂D and of M̂R . In order to have m̂ν diagonal, the
off-diagonal entries must vanish and this is possible only if the respective linear combinations
cancel out. However, there are no a priori reasons to have such cancellations, since it corresponds
to have well-defined relationships between the eigenvalues of m̂D and of M̂R , which is, in other
words, a fine-tuning. Avoiding this possibility, the only solution is to consider Eq. (21).

It is useful to classify the number of degenerate eigenvalues of mD and MR . There are nine
cases in total: 3 for mD (i = 1, 2 or 3-fold degeneracy) and 3 for MR (m = 1, 2 or 3-fold
degeneracy). In the following we will identify each case by (i,m). The cases (3,3), (2,3) and
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(3,2) are not consistent with experimental data on neutrino mass splittings, so we are left with
six viable cases:

(a) (1,1): mD and MR have no degenerate eigenvalues;
(b) (2,1): mD with 2 degenerate eigenvalues;
(c) (1,2): MR with 2 degenerate eigenvalues;
(d) (2,2): mD and MR with 2 degenerate eigenvalues;
(e) (3,1): mD with 3 degenerate eigenvalues;
(f) (1,3): MR with 3 degenerate eigenvalues.

We proceed to show that all the viable cases obey a common expression. In the basis in which the
RH neutrinos are diagonal we use mR

D (see Eq. (13)) and write m̂D = δi diag(v1, v2, v3), where
we have schematically indicated with δi the fact that i values of diag(v1, v2, v3) are equal. In
other words for δi = δ3 we have diag(v1, v1, v1) and for δi = δ2 we have diag(v1, v2, v1) or one
of its possible permutations. We thus have

mR
D = UTBPLODi

δi diag(v1, v2, v3)O
†
Di

PRORm. (22)

It is clear that in the subspace of the i degenerate eigenvalues the rotation ODi
acts as

ODi
δi diag(v1, v2, v3)O

†
Di

→ δi diag(v1, v2, v3). Therefore we simplify the expression of mR
D :

mR
D = UTBPLδi diag(v1, v2, v3)PRORm. (23)

The next step consists in the redefinition of the vi by absorbing PL,PR . In this way the degener-
acy of the i eigenvalues is broken and we finally get

mR
D = UTB diag(v1, v2, v3)ORm

=

⎛⎜⎜⎝
√

2
3v1

v2√
3

0

− v1√
6

v2√
3

− v3√
2

− v1√
6

v2√
3

v3√
2

⎞⎟⎟⎠ORm. (24)

According to our formalism, the RH neutrino mass matrix is trivially given by

M̂R = δm diag(M1,M2,M3), (25)

where δm indicates that m eigenvalues of diag(M1,M2,M3) are degenerate.
We now rewrite Eq. (23) according to the following parametrisation

mR
D = UTBP v̂ORm, (26)

with v̂ = diag(|v1|, |v2|, |v3|) and all the phases absorbed in the diagonal unitary matrix P . In
this basis and using the parametrisation given in Eq. (26) for mR

D , the type I see-saw formula of
Eq. (12) is written as

m̂ν = −DUT
TB(UTBP v̂ORm)M̂−1

R

(
OT

Rm
v̂PUT

TB

)
UTBD

= (
DPeiπ/2)v̂M̂−1

R v̂
(
eiπ/2PD

) = (
v̂M̂

−1/2
R R†)(R∗M̂−1/2

R v̂
)
, (27)

where D = P ∗e−iπ/2 is a consequence of our definition of m̂ν in Eq. (12), and where we have
introduced the arbitrary orthogonal complex matrix R in the last part of Eq. (27). ORm acts
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Fig. 2. Vertex correction involving a triplet scalar �.

only in the subspace of the degenerate right-handed neutrinos and in this subspace we have by
definition ORmOT

Rm
= 1. From Eq. (27) we have that

m̂−1/2
ν v̂M̂

−1/2
R R† = 1, (28)

and remembering that R†R∗ = RT R = 1 we arrive at our parametrisation for R∗

R∗ = m̂−1/2
ν v̂M̂

−1/2
R . (29)

By comparing Eq. (29) with the Casas–Ibarra parametrisation given in Eq. (18) we deduce that
in the case of exact TB mixing the matrix R is real and according to Eq. (19) the CP-violating
asymmetry vanishes.

Note that so far we did not refer to any specific model realisation and we have assumed just
exact TB diagonalisation of mν within the context of type I see-saw. We not only confirm the
result in [33] (in which a model with the A4 flavour symmetry has exact TB mixing leading
to a vanishing CP-violating asymmetry), but also extend it to any possible flavour symmetry
responsible for the exact TB scheme.5

It is also straightforward to check by replacing UTB with the appropriate mixing matrix that
the matrix R still turns out to be real for other exact mixing schemes as long as their mixing
matrix also consists purely of numbers (e.g. the corresponding matrix for the Bi-maximal mix-
ing scheme). Note also that although we have only considered three RH neutrinos our result is
absolutely generalisable to models with either two RH neutrinos or more than three such as [56].

The proof does not hold however in the presence of additional degrees of freedom, e.g. in
models involving type I and type II see-saw. Other contributions to the CP-violating asymme-
try will in general not vanish in the limit of exact TB mixing, rendering our result invalid for
situations which do not have only type I see-saw. In scenarios with type II see-saw the details
concerning the generation of the lepton asymmetry will depend upon the hierarchies between the
triplet (�) and the lightest RH neutrino masses [57,58]. Even in the case M� > MNα (Nα being
the lightest RH neutrino) the CP asymmetry will receive an extra contribution from the loop dia-
gram shown in Fig. 2. This contribution will not necessarily vanish, although it is constrained by
the TB mixing pattern [60].

An important consequence of our proof is that if the TB mixing pattern is due to any under-
lying flavour symmetry in a type I see-saw scenario, the viability of leptogenesis depends upon
possible departures from the exact pattern. In the context of models based on discrete flavour
symmetries that predict TB mixing at LO this is achieved through next to LO (NLO) corrections.
Since the size of the deviations from TB mixing are not arbitrary, in principle one might expect

5 This result is basis independent and thus remains true even assuming a non-diagonal charged lepton mass matrix.
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the CP-violating asymmetry to be constrained by low-energy observables such as θ13 and/or the
CP-violating phases.

In order to see if this is the case let us consider the most generic situation, in which NLO
corrections affect m�, mD and MR . We can perform a linear expansion in the corrections that
appear at NLO. First, we note that m� is no longer diagonal and thus we have to move to the
basis in which the charged lepton mass matrix is diagonal:

U
†
� m�m

†
�U� = (

m�m
†
�

)
diag, (30)

where U� = 1 + U
(1)
� , with U

(1)
� the matrix of the NLO shifts. Eq. (9) is modified as follows(

1 + U
(1)†
L

)
U

†
L

(
mD + m

(1)
D

)
UR

(
1 + U

(1)
R

) � m̂D + U
†
Lm

(1)
D UR + U

(1)†
L m̂D + m̂DU

(1)
R

≡ m̂′
D = m̂D + m̂

(1)
D ,(

1 + V
(1)T
R

)
V T

R

(
MR + M

(1)
R

)
VR

(
1 + V

(1)
R

) � M̂R + V T
R M

(1)
R VR + V

(1)T
R M̂R + M̂RV

(1)
R

= M̂ ′
R = M̂R + M̂

(1)
R . (31)

Here the unitary matrices are parametrised as the LO terms shifted by the NLO ones. The super-
script “(1)” refers to the NLO corrections and “′” to the complete mass matrices up to NLO. The
corresponding shifts on the light neutrino masses due to the NLO corrections can be estimated
according to

O
(
m̂′

ν − m̂ν

) ∼ O
(
m̂Dm̂

(1)
D /M̂R

) ∼ O
(
m̂2

DM̂
(1)
R /M̂2

R

)
. (32)

Similarly, we can parametrise the shift from the exact TB pattern in the neutrino mixing matrix:

Uν = UTB
(
1 + U

(1)
TB

)
D, (33)

where U
(1)
TB arises by the interplay between all the corrections. When we constrain the entries of

U
(1)
TB by neutrino experimental data, we obtain constraints on U

(1)
� , U

(1)
L , U

(1)
R , V

(1)
R . Experimen-

tal data on neutrino mass splittings constrains m
(1)
D and M

(1)
R .

We write now Eq. (24) in the new basis in which the RH neutrinos and the charged leptons
are diagonal:

mR′
D = (

1 + U
(1)†
�

)
UL

(
1 + U

(1)
L

)(
m̂D + m̂

(1)
D

)(
1 + U

(1)†
R

)
U

†
RVR

(
1 + V

(1)
R

)
= mR

D + U
(1)†
� mR

D + ULU
(1)
L m̂DU

†
RVR + ULm̂′

DU
†
RVR

+ ULm̂DU
(1)†
R U

†
RVR + mR

DV
(1)
R . (34)

Thus after including NLO corrections the quantity relevant for leptogenesis becomes

m
R′†
D mR′

D = m
R†
D mR

D + [
m

R†
D

(
U

(1)†
� mR

D + ULU
(1)
L m̂DU

†
RVR + ULm̂′

DU
†
RVR

+ ULm̂DU
(1)†
R U

†
RVR + mR

DV
(1)
R

) + h.c.
]
. (35)

Some comments are in order concerning this expression. The combination m
R†
D mR

D is shifted
by NLO corrections, and in general it is no longer real — leading to εNα �= 0 and enabling
viable leptogenesis. The combination of NLO corrections that defines the shift is not directly
related with any low-energy observable. Consequently, while we conclude that general model-
independent NLO corrections guarantee a non-vanishing CP-violating asymmetry, correlations
among low-energy observables in the leptonic sector and εNα cannot be established unless the
nature of the corrections is well known i.e. once the flavour model realisation has been specified.
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5. Model building realisations of the different possibilities

In the previous section we have presented a model-independent proof: exact TB mixing
produced by any flavour symmetry in a type I see-saw scenario corresponds to vanishing CP-
asymmetry. In this section we gather the different models studied in literature which fall under
the validity of the proof, and verify that they correspond to one of the six viable cases of Sec-
tion 4. We have also present a toy model exemplifying the (2,2) case (i.e. both matrices have
two degenerate eigenvalues) which has not been studied yet. We show that all models lead to a
vanishing CP-asymmetry and thus this analysis serves as an ample set of examples of the validity
our model-independent proof.

Before describing the flavour models proposed in the literature, it is useful to explain the
generic approach considered in flavour symmetry model building. The main goal of these models
is to explain the fermion mass hierarchies and mixing angles. To do so, an horizontal flavour
group Gf is added to the gauge group of the SM and the SM fields transform in a non-trivial
way under Gf . Extra fields (flavons) are added to the particle spectrum: the flavons are invariant
under SU(3) × SU(2) × U(1), but not under Gf ; they can acquire a non-vanishing vacuum
expectation value (VEV) which spontaneously breaks the flavour symmetry in a well determined
breaking chain. It is through the specific realisation of the breaking chain that one can achieve the
goal of explaining fermion data: for example, the lepton mixing matrix becomes the TB structure
when Gf is broken down to two distinct and specific subgroups, G� in the charged lepton sector
and Gν in the neutrino one, with the type of these subgroups defining the flavour structure of the
mass matrices for the leptons (which is model-dependent).

In the following analysis we specify only which Gf was used, and the resulting neutrino mass
matrices. We leave all other details to the original papers.

(a) (i,m) = (1,1)

There are only a few examples of this case in literature. This case is particularly attractive
within the context of a Grand Unified Theory (GUT). In some cases the models do not have
exact TB only because they account simultaneously for the quark sector [12], with the Cabibbo
angle generating LO deviations from exact leptonic TB — therefore they are not as interesting
for our current purpose, and in [59] leptogenesis within the sequential dominance framework
was considered in detail (note that there is no inconsistency with our model-independent proof).
Here we consider instead two other cases explicitly.

1. In [28] the authors present a model in the context of the SO(10) GUT with the addition of the
flavour group Gf = SU(3) × U(1). The breaking of Gf down to the discrete non-Abelian
group A4 provides the TB pattern for the lepton mixing matrix. The neutrino mass matrices
have the flavour structure:

mD ∝
(

A B 0
B ωA 0
0 0 ω2A

)
and MR ∝

(
A′ B ′ 0
B ′ ωA′ 0
0 0 ω2A′

)
, (36)

where ω = e
2iπ

3 . It is straightforward to show how the correct mixing pattern is recovered
by the diagonalisation of the charged lepton mass matrix and we refer to the original paper
for the details. For leptogenesis what is relevant are the imaginary parts of the off-diagonal
entries of the product m

R†
mR , and in this case it is a diagonal matrix.
D D
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2. Another pattern has been presented in [34] in the context of an SO(10) GUT model with A4
as the additional flavour group. The mass matrices have the following structure

mD ∝
(

A 0 B

0 C 0
B 0 A

)
and MR ∝

(
A′ 0 B ′
0 C′ 0
B ′ 0 A′

)
. (37)

After considering the charged leptons the TB mixing scheme is obtained. Computing
m

R†
D mR

D , we find that the off-diagonal entries are real.

(b) (i,m) = (2,1)
There are several papers in which the Dirac neutrino mass matrix has only two independent

mass eigenvalues: we can divide the discussion in terms of the flavour patterns used for the mass
matrices.

1. The first pattern is present in [19,24,29,33,39,41,43]. In the basis of diagonal charged lep-
tons, the neutrino mass matrices have the structure:

mD ∝
(1 0 0

0 0 1
0 1 0

)
and MR ∝

(
A′ + 2B ′ −B ′ −B ′

−B ′ 2B ′ A′ − B ′
−B ′ A′ − B ′ 2B ′

)
, (38)

where MR is exactly diagonalisable by the TB mixing. The product m
R†
D mR

D is proportional
to the identity.
Two different discrete groups have been used: A4 in [19,29,33,39,41,43] and T ′ in [24].

2. The other pattern has been presented in [37] where the authors have used the S4 discrete
symmetry and it differs from the previous one in the explicit form of the Majorana mass
matrix:

mD ∝
(1 0 0

0 0 1
0 1 0

)
and MR ∝

( 2A′ B ′ − A′ B ′ − A′
B ′ − A′ 2A′ + B ′ −A′
B ′ − A′ −A′ 2A′ + B ′

)
. (39)

This pattern corresponds to a completely different neutrino oscillation phenomenology, but
the contribution to leptogenesis is still vanishing in the limit of exact TB mixing.

(c) (i,m) = (1,2)
There is only one pattern within this case [38]. The discrete group A4 is used to construct a

Majorana mass matrix with two degenerate eigenvalues and a Dirac mass matrix of the TB-type.6

The mass matrices are given by:

mD ∝
(2A + B −A −A

−A 2A B − A

−A B − A 2A

)
and MR ∝

(1 0 0
0 0 1
0 1 0

)
. (40)

The product m
†
DmD is diagonalised by the TB mixing matrix and it is easy to verify that also the

light neutrino mass matrix has this property. mR†
D mR

D does not present any imaginary off-diagonal
factor.

6 We underline the absence of a relevant contribution to the Dirac mass matrix, the antisymmetric contraction of the two
triplets in a singlet [30]. In order to recover the TB pattern it is possible to either assume a fine-tuning on the parameters
or alternatively to adapt the model to use another discrete group such as S4, in which case this problem is naturally solved
by its properties.
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(d) (i,m) = (2,2)

There are no models of this kind in the literature. The difficulty consists in the possibility that
the degenerate eigenvalues of the Dirac and Majorana matrices conspire to give a degenerate light
neutrino spectrum. A fully developed model is beyond the scope of this paper, but we present here
an example. Although it requires some ad hoc conditions it is sufficient to illustrate a possible
setting in which both non-degenerate light neutrino spectrum and TB mixing are achieved.

The flavour group consists of SO(3) (or a subgroup with an irreducible triplet representation).
The additional scalar content is a set of four flavon triplets, φ123, φ23, φ2 and φ3 which get
non-vanishing VEVs. At this level we fix only the VEVs of the first two flavons in such a way
that 〈φ123〉 ∝ (1,1,1) and 〈φ23〉 ∝ (0,1,−1) (these VEVs must be orthogonal). The structure is
reminiscent of the models in [12].

The left and RH neutrinos transform as triplets under SO(3). We assume that any additional
symmetry allows the Dirac terms

(φ123iνi)(φ2αNα), (φ23iνi)(φ3αNα) (41)

and the Majorana terms

NαNα, (φ3αNα)(φ3βNβ). (42)

The term NαNα by itself would lead to degenerate masses in the Majorana matrix. The degen-
eracy is lifted only for one of the states by the VEV 〈φ3〉 ∝ (0,0,1) (two eigenvalues remain
degenerate). Thus the RH neutrino mass matrix has structure:

MR ∝
(1 0 0

0 1 0
0 0 x

)
, (43)

where x parametrises that the entry receives contribution due to 〈φ3〉. In the Dirac sector one
of the eigenvalues is zero. For a non-trivial choice of parameters we end up with exactly two
non-zero degenerate eigenstates. With 〈φ2〉 ∝ (0,1,0) and through the type I see-saw, the term
(φ123iνi)(φ2αNα) will give rise to the solar eigenstate and the term (φ23iνi)(φ3αNα) will give
rise to the atmospheric eigenstate. In this case the Dirac mass matrix is:

mD ∝
(0 t 0

0 t b

0 t −b

)
, (44)

where t and b parametrise the contributions of (φ123ν)(φ2N) and (φ23ν)(φ3N) respectively.
The effective neutrino mass matrix is diagonalised by TB mixing, as this model fits within the
framework described in [12]. There is sufficient freedom to fit the squared mass differences (as
required by phenomenology), although only strongly hierarchical cases are possible due to the
vanishing eigenvalue of mD . The Dirac matrix has two degenerate masses by requiring 3t2 = 2b2

(completely ad hoc, as it requires the conspiracy of the VEVs of the flavons — we can express it
as a very specific requirement on the magnitude of 〈φ2〉). It is straightforward to see that m

R†
D mR

D

is a diagonal matrix, leading to vanishing leptogenesis.

(e) (i,m) = (3,1)

This case is the most studied in literature and there are some interesting flavour patterns.



D. Aristizabal Sierra et al. / Nuclear Physics B 827 (2010) 34–58 47
1. The first pattern has been presented in [16,23,26,32] and the flavour group which has been
used is A4. The mass matrices appear as

mD ∝ 1 and MR ∝
(

A 0 0
0 A B

0 B A

)
. (45)

The charged leptons need to be rotated in diagonal form, and the main result is that the lepton
mixing matrix is exactly the TB scheme.

2. The second pattern [17,20,22] is similar to the previous one and it still originates in an A4
context. The mass matrices are the following:

mD ∝ 1 and MR ∝
(

A 0 B

0 A 0
B 0 A

)
. (46)

In the basis of diagonal charged leptons, we obtain the TB pattern for the lepton mixing
matrix.

3. The third pattern [18] is also similar to the first one. Once again it is based on the A4 discrete
symmetry. The mass matrices are given by

mD ∝ 1 and MR ∝
(

C 0 0
0 A B

0 B A

)
. (47)

Like in the previous cases, when going to the basis of diagonal charged leptons it is easy to
see that the lepton mixing matrix is the TB pattern.

For all three patterns, it is trivial to see that m
R†
D mR

D is proportional to the identity matrix.

(f) (i,m) = (1,3)
This case has been studied in two distinct patterns.

1. In [25,30] a flavour model based on the A4 group has been provided. The model is extremely
similar to the previous case, of [16,23,26,32], where the structures of the Dirac and the
Majorana mass matrices are exchanged:

mD ∝
(

A 0 0
0 A B

0 B A

)
and MR ∝ 1. (48)

In the basis of diagonal charged leptons the light neutrino mass matrix is diagonalised by the
TB scheme and the product m

†
DmD is real.

2. The second pattern has been presented in [40] and it is similar to that of [17,20,22], discussed
in the previous case, exchanging the structure of the Dirac and the Majorana mass matrices:

mD ∝
(

A 0 B

0 A 0
B 0 A

)
and MR ∝ 1. (49)

This result has been developed in the context of the A4 flavour symmetry.7 The authors
themselves have concluded that mD does not give rise to leptogenesis.

7 We underline the presence of the same difficulty previously discussed in (1,2) about [38], which can be naturally
solved by using S4 instead.
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Table 1
Matter and scalar content of the model and their transformation properties under Gf [39].

L ec μc τc Nc Hu Hd ϕT ξ ′ ϕS ξ ζ

A4 3 1 1 1 3 1 1 3 1′ 3 1 1
Z3 1 1 1 1 ω 1 1 1 1 ω ω ω2

Z4 1 −1 −i 1 1 1 −i i i 1 1 1

To conclude, each pattern in each case agrees with our model-independent result. Exact
flavour symmetry imposed TB in type I see-saw leads to vanishing CP-asymmetry (the off-
diagonal entries of m

R†
D mR

D are either trivially zero or real).

6. Model dependent perturbations

We concluded Section 4 with the observation that by assuming general perturbations to the
TB matrix obtained with an underlying flavour symmetry there are no correlations between low
and high-energy scale CP violation parameters. This result was derived from Eq. (34) where it
can be seen that the number of free parameters governing the perturbations is quite large and thus
no correlation can be expected. In the context of specific flavour models it is possible that the TB
scheme is perturbed by a small number of corrections, and in this interesting case correlations
between low-energy scale observables and the CP-violating asymmetry may be established.

In this section we consider a supersymmetric model based on the Gf = A4 ×Z3 ×Z4 discrete
flavour symmetry [39], which for our purposes is attractive due to its elegance and predictivity.
The relevant NLO corrections appear only in the Dirac mass and can be parametrised in terms
of only 3 complex parameters. Neutrino masses are induced only through type I see-saw so the
results from Section 4 hold — in fact we have considered it explicitly in Section 5, as one of the
models with the first pattern of class (2,1).

The three factors in Gf play different roles. The spontaneous breaking of A4 is directly re-
sponsible for the TB mixing. The Z3 ×Z4 factor avoids large mixing effects between the flavons
that give masses to the charged leptons and those giving masses to neutrinos, and it is also respon-
sible for the hierarchy among charged fermion masses. The flavour symmetry breaking sector of
the model includes the scalar superfields ϕT , ξ ′, ϕS , ξ and ζ . The transformation properties of
the lepton superfields L, ec , μc, τ c , of the electroweak scalar doublets Hu and Hd and of the
flavon superfields are reproduced in Table 1 for ease of reference.

We present the Yukawa superpotential of the model as an expansions in 1/Λ, where Λ is the
cut-off of the theory: the LO terms are given by

W� = 1

Λ
yτ (LϕT )τ cHd

+ 1

Λ2
y(1)
μ (LϕT )′′ξ ′μcHd + 1

Λ2
y(2)
μ (LϕT ϕT )μcHd

+ 1

Λ3
y(1)
e (LϕT )′(ξ ′)2ecHd + 1

Λ3
y(2)
e (LϕT ϕT )′′ξ ′ecHd

+ 1

Λ3
y(3)
e (LϕT ϕT ϕT )ecHd, (50)

Wν = − 1
y
(
LNc

)
ζHu + xa

(
NcNc

)
ξ + xb

(
NcNcϕS

)
, (51)
Λ
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where (. . .), (. . .)′ and (. . .)′′ stand for the contraction in the representations 1, 1′ and 1′′ of A4,
respectively.

The flavon superfields acquire the following VEVs:

〈ϕT 〉 =
( 0

vT

0

)
, 〈ξ ′〉 = u′, 〈ϕS〉 =

(
vS

vS

vS

)
, 〈ξ 〉 = u, 〈ζ 〉 = w, (52)

where vT , u′, vS , u and w are the small symmetry breaking parameters of the theory. This
pattern of VEVs guarantees that the lepton mixing is approximately TB. It is possible to align
these VEVs in a natural way, as the result of the minimisation of the scalar potential [39]: we
underline that the symmetry content prevents any deviations from this pattern at NLO and allows
the order of magnitude relations between parameters vT ∼ u′ and vS ∼ u ∼ w, assuming at most
a mild hierarchy among the two sets.

The charged lepton mass matrix can be approximately written as

m� =

⎛⎜⎜⎝
∼ v3

T

Λ3 0 0

0 ∼ v2
T

Λ2 0

0 0 ∼ vT

Λ

⎞⎟⎟⎠vd, (53)

where vd = 〈Hd〉. A lower bound on the parameters vT /Λ can be fixed by the requirement that
the τ Yukawa coupling yτ does not become too large, and we can estimate it as

vT

Λ
= tanβ

yτ

√
2mτ

v
≈ 0.01

tanβ

yτ

, (54)

where v ≈ 246 GeV and tanβ = 〈Hu〉/〈Hd〉. Taking mτ = (1776.84 ± 0.17) MeV and request-
ing |yτ | < 3, we find a lower limit on vT /Λ of 0.007 for tanβ = 2, the smallest value we consider.

The neutrino mass matrix gets contributions from the type I see-saw according to Eq. (4). We
have:

mD =
(1 0 0

0 0 1
0 1 0

)
ywvu

Λ
, MR =

(
b + 2d −d −d

−d 2d b − d

−d b − d 2d

)
u, (55)

with vu = 〈Hu〉, b ≡ 2xa and d ≡ 2xbvS/u. The mass matrices MR and mD are μ–τ sym-
metric and satisfy the conditions in Eq. (11). Accordingly, MR and mν are diagonalised by
the TB mixing matrix, giving as eigenvalues M1 = |b + 3d|, M2 = |b|, M3 = |b − 3d| and
mi = (ywvu)2/(Λ2Mi). We already mentioned in Section 5 that the same mass matrices are
present in [16,19,21,24]. The phenomenology has already been studied in [37], so we summarise
here the main results and refer to [37] for the details. The model can explain both Normal and
Inverse Hierarchy (NH and IH) and features lower bounds on the mass of the lightest neutrino:
in particular for the NH the lightest neutrino mass has a well defined and narrow range of values
between 4.4 meV and 7.3 meV.

In order to estimate the parameter εNα , we write the Dirac mass matrix in the basis of diagonal
and real RH neutrinos:

mR
D = mDUTBD′, (56)

where D′ = diag(eiφ1/2, eiφ2/2, eiφ3/2) and φα are the phases of b + 3d , b, b − 3d respectively
(the eigenvalues of MR). As was mentioned in Section 5 the product m

R†
D mR

D is a diagonal matrix
and therefore εNα = 0, in perfect agreement with our model-independent proof in Section 4.
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A non-vanishing CP-violating asymmetry can be obtained at NLO when the TB mixing is
perturbed. In this model the additional discrete Abelian symmetries Z3 × Z4 only admit NLO
corrections to the Dirac terms. We do not consider terms whose contributions can be reabsorbed
in a redefinition of the LO parameters, focusing only on terms that lead to deviations in the
mixing angles:

−W NLO
ν = 1

Λ
y1

(
LNc

)′
(ϕSϕS)′′Hu + 1

Λ
y2

(
LNc

)′′
(ϕSϕS)′Hu + 1

Λ
y3

((
LNc

)
A
ϕS

)
ξHu,

(57)

where (. . .)A refers to the asymmetric contraction of the triplet representation. The deviations to
mD can be written as

m
(1)
D =

( 0 y1 + y3 y2 − y3
y1 − y3 y2 y3
y2 + y3 −y3 y1

)
vu v2

S

Λ2
, (58)

where y3 accounts for the ratio u/vS . Note that this correction is of Tri-maximal type [50,51].
As the LO starts out as TB, and TB is also a (special) case of Tri-maximal, the perturbed model
fits within that mixing scheme. It is important to clarify that the general Tri-maximal scheme
is explicitly out of the validity of the model-independent proof presented in Section 4 — while
particular cases of Tri-maximal have mixing matrices independent of the masses (obviously this
is the case for TB), in general it is possible to a Tri-maximal case where mixing angles depend on
the masses. The perturbed model considered here is one such case, and as we will see it can admit
viable leptogenesis. Including Eq. (58), the TB mixing receives small perturbations according to
Uν = UTBδU , where only the element (δU)13 is relevant. Parametrising this term as:∣∣(δU)13

∣∣ =
∣∣∣∣
√

3

2
sin θ13e

iδ

∣∣∣∣ ∼ O
(

vS

Λ

)
, (59)

where δ is the CP-violating Dirac phase in the standard parametrisation of the lepton mixing
matrix, we write the other two mixing angles at NLO as

sin2 θ23 = 1

2
(1 + √

2 cos δ sin θ13), sin2 θ12 = 1

3

(
1 + sin2 θ13

)
. (60)

In Fig. 3, we plot Eqs. (60) in red (with δ = 0) and plot the results of a numerical analysis in
green and blue points corresponding to the IH and NH neutrino spectrum respectively (in which
we take vS/Λ ∼ w/Λ = 0.007–0.23, tanβ = 2–50 and we treat y, y1, y2 and y3 as random
numbers with modulus between 0.1 and 2).

We expect that NNLO corrections affect these relations: we estimate that NNLO perturbations
will be of the order of sin2 θ13 and therefore sin2 θ12 will receive non-negligible corrections.

We can impose an upper bound on vS/Λ by requiring that the correction to the TB value of
sin2 θ12 does not take it outside the experimental 3σ range: the maximal allowed deviation from
the TB value is 0.05 and from there we impose the bound vS/Λ < O(0.23).

We consider now mR′
D (the NLO Dirac neutrino mass matrix in the basis of diagonal and real

RH neutrinos). We can write:

mR′
D = mR

D + m
(1)
D UTBD′, (61)

and calculate the relevant product for leptogenesis, m
R′†
D mR′

D , keeping only the first terms in the
expansion in the small parameter v2

S/Λ2:

m
R′†

mR′ = m
R†

mR + (
D∗UT m

(1)†
mR + h.c.

)
, (62)
D D D D TB D D
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Fig. 3. Correlation between sin2 θ13 and sin2 θ23 (left panel) and sin2 θ12 (right panel). Each panel compares the ana-
lytical approximations given in Eqs. (60) (red lines) with the numerical results. The green and blue points correspond
to the IH and NH neutrino spectrum respectively. For the analytical expressions of sin θ2

23 we have fixed the CP-Dirac
phase δ at 0. In the numerical analysis the ratio vS/Λ ∼ w/Λ has been taken in the window bounded from the constraints
arising by yτ and sin2 θ12, that is 0.007 < vS/Λ < 0.23. The value of tanβ spreads between 2 and 50, while all the other
free parameters, y, y1, y2 and y3, are treated as random numbers with absolute value between 0.1 and 2. The horizontal
dashed orange lines corresponds to the bounds at 1 and 2σ level, respectively, for sin2 θ13, the vertical dashed black line
corresponds to the central values of sin2 θ23 and sin2 θ12 while the vertical dashed orange lines to their bounds at 1 and
2σ level, respectively. The plots are cut in correspondence of the 3σ level bound for sin2 θ13, sin2 θ23, sin2 θ12. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where in the second term the only off-diagonal entries are the 13 and 31 ones. In the case of
IH spectrum for the light neutrinos, the lightest RH neutrino is N2: in this case the summation
in the numerator of Eq. (14) does not contain the term 13 and therefore εN2 is vanishing also at
NLO. This, however, does not mean leptogenesis cannot be realized in this case. Since there is
only a mild hierarchy between N2, N1 and N3 and neither εN1 nor εN3 vanishes, leptogenesis
will proceed through N1,3 dynamics. In the NH case the RH neutrino mass spectrum follows the
hierarchy MN3 < MN2 < MN1 . There is a mild hierarchy between N3 and N2 while the hierarchy
between N3 and N1 is large (around a factor 9). Consequently, the lepton asymmetry generated in
N1 decays will be, in general, erased by the lepton number violating interactions of N3. Only N3

dynamics becomes relevant for the generation of a lepton asymmetry in this case. Note that if the
hierarchy between N1 and N3 decreases (as could be in the case of a quasi-degenerate spectrum),
so it becomes mild, N1 dynamics should be taken into account. Henceforth, for simplicity, we
will consider only the NH case for which, according to Eq. (14), the CP-violating parameter εN3

can be written as

εN3 = 1

8π

1

v2
u(m

R†
D mR

D)11
Im

[((
m

R†
D mR

D

)
13

)2]
f

(
M2

1

M3
3

)
. (63)

In the following figures we show a series of scatter plots related to the predictions of the model
and the connections among low-energy observables and εN3 . The (blue) points correspond only
to the NH neutrino spectrum (in which we take vS/Λ ∼ w/Λ = 0.007–0.23, tanβ = 2–50 and we
treat y, y1, y2 and y3 as random numbers with modulus between 0.1 and 2). Red lines correspond
to analytical results.
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Fig. 4. Correlation between εN3 and sin2 θ13 (first row, left panel), sin2 θ23 (first row, right panel), sin2 θ12 (second row).

The horizontal orange line corresponds to εN3 ∼ 10−6, the vertical orange lines correspond to the bounds at 1 and 2σ

level of sin2 θ13, sin2 θ23 and sin2 θ12 respectively while the vertical dashed black lines correspond to the central values
of sin2 θ23 and sin2 θ12. The range presented in the plots covers the 3σ level bounds. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

In Fig. 4 we show all the correlations between the CP asymmetry parameter εN3 and the lepton
mixing angles (expressed as sin2 θ13, sin2 θ23 and sin2 θ12). As expected by comparing Eq. (63)
with Eq. (60), εN3 is correlated to all low-energy mixing angles.

The same information is contained in Fig. 5 where we show the deviations of θ13, θ12, θ23
from the respective TB value for the points that reach the necessary amount of CP asymmetry.
The deviations are compared to the reference value λ2

C ∼ 0.05, where λC is the Cabibbo angle.
This comparison is particularly interesting because λ2

C is the typical order of magnitude of the
corrections to the TB mixing allowed by neutrino data fit in models based on flavour symmetries
and predicting TB mixing (in particular, this is a natural consequence in classes of flavour models
that include GUTs [12]). Our numerical analysis shows indeed that the order of magnitude of
|�θ23|, |�θ13| is close to λ2

C while |�θ12| tends to be smaller. We note that only a few points
reach the necessary amount of CP asymmetry εN3 when the deviations of the mixing angles from
their TB values are smaller than λ2

C . By comparing the left and right panel of Fig. 5 we can
get the lower bound for sin2 θ13 necessary to have successful leptogenesis in this model, that is
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Fig. 5. Correlation between the deviation of θ23 (left panel) and θ12 (right panel) with θ13 from their TB mixing values
for the points that satisfy εN3 � 10−6. The red lines represent the analytical results from Eqs. (60). The vertical and

horizontal orange lines corresponds to |�θ13|, |�θ23|, |�θ12| ∼ λ2
C

with λC the Cabibbo angle. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The high-energy CP violation asymmetry parameter εN3 versus the low-energy lepton CP-Dirac phase δ and
the difference of the light neutrino Majorana phases φ1 and φ2. In both plots the horizontal orange line corresponds to
εN3 ∼ 10−6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

sin2 θ13 ∼ 10−2. Future experiments will further constrain (and possibly rule out leptogenesis
within this model). Double Chooz will probe sin2(2θ13) to 10−2 in the next five years and Triple
Chooz will reach below that value [61].

Finally Fig. 6 wants to investigate the possible correlations between the high-energy CP asym-
metry parameter εN3 and the low-energy CP-Dirac and Majorana phases. The left panel of Fig. 6
shows that the low-energy CP-Dirac phase δ (δ in the plot) is not correlated to εN3 . This result
is not surprisingly: the phases that enter in εN3 are related to the phases present in MR , while δ

arises by the phases that appear in what we defined as m
(1)
D in Eq. (61). On the contrary the right

panel of Fig. 6 indicates that the difference between the Majorana phases φ1 and φ2 (�φ12 in
the plot) presents a correlation with εN . The reason is very simple: at LO the phenomenological
3
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analysis of this model shows that the NH spectrum can be reproduced only if �φ0
12 is small.

Moreover at LO, �φ0
12 coincides with the corresponding Majorana phase difference �φR

12 of the
right-handed neutrinos. By perturbing the neutrino Dirac mass matrix we introduce new arbitrary
phases that can vary in all the interval (0,2π). However the NLO contributions are responsible
both of deviating the lepton mixing angles by the TB values and slightly modifying the neutrino
spectrum, in the range allowed by the data fit. This means that in general at NLO the neutrino
(complex) mass eigenvalues are given by

mi ∼ m0
i + δmi, (64)

where δmi are complex parameters and m0
i the neutrino mass eigenvalues at LO. Requiring now

that �m2
12 is still in the range indicated for �m2

sol we have that δm ∼ |δm1,2| ∼ 10−3 eV for

|m0
1|, |m0

2| ∼ O(

√
�m2

sol). A straight computation shows then that the Majorana phase �φ12

satisfies

tan�φ12 ∼ tan�φ0
12 + α

δm

O(

√
�m2

sol)

, (65)

where �φ0
12 is the LO Majorana phase difference and α ∈ (0,1) a parameter that takes into ac-

count that the δm1,2 phases run into the interval (0,2π). We can estimate the maximal deviation
of �φ12 by its LO value getting

�φ12 − �φ0
12 ∼ π

10
. (66)

Notice that the left panel of Fig. 6 shows that the majority of all the points are indeed inside the
interval (−π/8,π/8) in perfect agreement with our analytical results for a small LO �φ0

12 � 0.1.
In summary our analysis shows that in the model considered it is possible to obtain cor-

relations between low-energy observables and the high-energy CP-violating parameter, but it
confirms that in general no correlation is present between high and low-energy CP-violating
parameters (or in the case of the Majorana phases, negligible correlation).

7. Conclusion

In this paper we considered under rather general conditions the possibility of links between
low-energy observables and high-energy parameters that are relevant for leptogenesis — in the
most general case no such connections can be recovered.

When assuming exact TB mixing independently of any specific justification, we conclude
that it is in general possible to obtain leptogenesis. Constraining the situation to the case of type I
see-saw is insufficient to provide a link between the different type of parameters.

In the main part of this work, we considered the more natural case where exact mixing patterns
originate from any flavour symmetry. We confirmed that the results of [33] concerning TB mixing
apply to the case of unflavoured leptogenesis when there is only type I see-saw. We generalised
this conclusion into a model-independent proof that is also valid for other flavour symmetry
imposed mixing schemes if the mixing matrix consists purely of numbers — this includes Bi-
maximal mixing, golden-ratio mixing, and some but not all cases of Tri-maximal mixing. We
emphasise that the proof does not hold when there are also other types of see-saw (such as
type II): in models in which there is interplay between different see-saws, it is possible to have
leptogenesis without lifting the exact (TB) pattern. These interesting cases shall be considered in
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detail in future work [60]. Still in the model-independent framework with only type I see-saw, we
considered the most general NLO corrections that can lift TB mixing and how these corrections
can enable leptogenesis.

From the model-independent proof we proceeded by considering several flavour symmetry
models with exact TB mixing and only type I see-saw. As expected, in all cases the specific
conditions led to vanishing CP asymmetry.

Finally we studied a specific example in which a flavour symmetry model has deviations from
exact TB, which can then enable leptogenesis. In a general case there would be many parameters
governing the deviation from TB mixing and thus an interesting link between observable mix-
ing angles and leptogenesis may not even exist. We selected an example where the deviation is
parametrised such that it is possible to obtain relatively simple analytical expressions relating the
observable deviations from TB angles to the CP asymmetry. There is a clear and strong correla-
tion between deviations from TB angles (such as the non-vanishing value of θ13) and the value of
the CP asymmetry parameter: particularly we note that if we insist in having viable leptogenesis
in this model we can considerably constrain the allowed parameter space of the NH spectrum.
Future experiments will probe the remaining parameter space.

To summarise, in order to have TB mixing scheme originating from a flavour symmetry and
still have viable leptogenesis the model requires NLO corrections lifting the exact mixing, or
alternatively it requires independent contributions to the CP asymmetries such as those that nat-
urally arise from an interplay between different see-saws.

Note added in proof

While completing this paper we received Refs. [62,63], where the interplay of flavour sym-
metries and leptogenesis in the context of type I see-saw is also discussed. Both papers consider
specific models based on the discrete group A4. Furthermore, Ref. [62] discusses a general
model-independent approach which complements the distinct model-independent proof we pro-
vide here.
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