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Abstract

We address two fundamental aspects of flavor physics: the mass hierarchy and the large lepton mixing angles. On one side, left-right flavor
symmetry realizes the democratic mass matrix patterns and explains why one family is much heavier than the others. On the other side, discrete
flavor symmetry such as A4 leads to the observed tribimaximal mixing for the leptons. We show that, by explicitly breaking the left-right flavor
symmetry into the diagonal A4, it is possible to explain both the observed charged fermion mass hierarchies and quark and lepton mixing angles.
In particular we predict a heavy 3rd family, the tribimaximal mixing for the leptons, and we suggest a possible origin of the Cabibbo and other

mixing angles for the quarks.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The recent experimental developments in neutrino physics
allowed us to intensify the studies of the flavor structure of the
Standard Model (SM) and its extensions. The hardest task was
the understanding of the relation between the mass hierarchies
and the large lepton mixing angle between the 2nd and 3rd fam-
ilies. In particular the no-go theorem [1] shows that contrary
to expectations, a maximal mixing angle 6,3 can never arise
in the symmetric limit of whatever flavor symmetry (global or
local, continuous or discrete), provided that such a symmetry
also explains the hierarchy among the fermion masses and is
only broken by small effects, as we expect for a meaningful
symmetry. A milestone in these studies has been the discovery
that mass hierarchies and mixing angles can be not directly cor-
related among them in the flavor symmetry breaking [2,3]. In
particular, while the mass hierarchies are in general obtained
by using continuous flavor symmetries, such as non-Abelian or
U (1) flavor symmetry 4 la Froggatt—Nielsen, the neutrino ex-
perimental data indicate that the lepton mixing angles may be
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explained by discrete flavor symmetries. This complementarity
between hierarchy and mixing angles allow us to escape from
the hypothesis of the theorem previously outlined [4,5]. The
idea is that the flavor symmetry that predicts a large mass for
the 3rd family does not make any prediction on the mixing an-
gles. However, once the symmetry is broken into a discrete one,
then the mixing angles are naturally generated. Another guide-
line in flavor physics is given by the unification of the gauge
groups. This ingredient forces the field transformations under
the flavor symmetry to be related among them, and strongly re-
duce the degrees of freedom in the model building.

The finite group of even permutations of 4 objects, A4, is
the smaller non-Abelian finite group that contains a triplet irre-
ducible representation. It is the first alternating group that is not
isomorphic to any modulo n group, Z,, or to any direct prod-
uct of permutation groups, S,. It has been used in the last years
[6-15] to build a huge number of models that predict for the
lepton sector the tribimaximal mixing matrix [16] with maxi-
mal atmospheric angle [17,18], 613 =0 [19] and sin? Oso1=1/3
[20-24] that agree with neutrino oscillation data. In [5] a non-
supersymmetric SO(10) x A4 grand unified model, which suc-
cessfully preserves tribimaximal leptonic mixing and can ac-
commodate all known fermion masses, has been discussed.
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In this Letter we will show how the embedding of the dis-
crete group A4 into a left-right symmetry allows us to explain
the large hierarchy between the 3rd and the first two families
of quarks and charged leptons. At the same time the charged
fermion masses of two light families, that of the neutrinos, and
the fermion mixing matrices are related to the explicitly break-
ing of the left-right symmetry into the diagonal A4 and are
generated when A4 is spontaneously broken. In particular the
Cabibbo angle in the quark sector is induced by higher order
operators that explicitly break SO(3); x SO(3)g but preserve
the diagonal A4. Our final aim would be to introduce a gauge
unification group SO(10)-like. Since in SO(10) all the Stan-
dard Model (SM) matter fields of one family belong to the same
multiplet, namely a 16-plet, as starting point we will consider
a model based on the discrete flavor symmetry A4 in which
left-handed and right-handed fermions belong to the same rep-
resentation of A4.

The group A4 has four irreducible representations, three sin-
glets 1, 1/, 1”7 and a triplet 3. Several extensions of the SM
are presented in the literature, depending on the A4 family
symmetry realization and the assignments for left-handed and
right-handed fermion fields. As we motivated before, we are
interested in a realization where both left-handed and right-
handed fields have the same A4 assignment, in such a way to
be able to perform an embedding into a gauge grand unified
group like SO(10). Therefore in this Letter we will consider a
model similar to that proposed in [4,5] where both left-handed
and right-handed fields are in the triplet representation of A4.

2. Mass of the 3rd family from the left—right flavor
symmetry

The study of models based on the flavor symmetry
UB)r x UB)g [25] or its subgroups both continuous [26]
or discrete [27-29] has a long history. Usually, by imposing
a discrete symmetry like S3, x S3,, the charged fermion mass
matrix obtained is the so-called democratic mass matrix [30]
given by

I
Moszf(l 1 1). (1)
111

This matrix has only one eigenvalues different from zero, m ¢,
and can be assumed to be the mass of the 3rd family. The uni-
tary matrix that diagonalizes the symmetric matrix Mo s has one
angle and the three phases undeterminated. One possible para-
metrization is given by

V2cosf el \/2sin@elB+7) 1
U= L 76“"(% +\/§sin93”7) e"f’(\/gcowf %sin@eil’) 1
V3 —eie (2 _\/ésmeew) —efﬁ(\/gcosejuﬁsmoew) 1

2

The unknown angle and phases are fixed only after breaking the

democratic structure of Moy with a small perturbation §M ,
ie.,

My=Myr+My.

For instance, in [31] My is given by

is 0 O

SMy ~ ( 0 —is 0) 3)
0 0 e

and My is diagonalized by

1/V2 1V6 1/43
Uf=(—1/f2 1/v/6 1/¢5>,
0 —2/v/6 1/V3

obtained by substitutingoe = § =y =0and § = /6 in Eq. (2).

The effect of M y is to give a small mass to the first and sec-
ond families and to fix the mixing angles. Another feature of
the models based on a symmetry that gives democratic charged
fermion mass matrices is that up and down quarks are diagonal-
ized by almost identical matrices and therefore the CKM can be
fitted to be close to the identity. Some attempts of including the
neutrinos in this kind of models are quite successful and can fit
with good agreement the data [31]. Nevertheless, models that
have a democratic mass matrix for the charged fermions and at
the same time predict the tribimaximal mixing matrix for the
leptons are still missing.

In the following we will build a “supersymmetry inspired”
model, in the sense that the scalars and the SM matter fields we
introduce belong to supermultiplets and the Lagrangian arises
by a superpotential. In the supersymmetric model proposed in
[32] the correct alignment of the vevs in the lepton sector, that
gives the tribimaximal mixing matrix, has been successfully
obtained. However it is difficult to obtain the same result in
a context that is non-supersymmetric. By the way, in order to
focus on the origin of the mass hierarchies and mixing angle
and to make lighter the reading we will report only the Yukawa
Lagrangian involving the SM-like fields.

2.1. Explicitly breaking of SO(3)1 x SO(3)g into Aa

Let us now extend the flavor symmetry and let us think
to A4 as a discrete subgroup of the continuous global group
SO3)r x SO3)r. To implement the idea of explaining both
the hierarchy and the mixing angles by starting with the same
flavor symmetry, we use two kinds of symmetry breaking: the
explicit one and the spontaneous one (see Fig. 1).

We impose that the fermion weak doublets L, Q transform
with respect to SO3)r x SO(3)g as ~ (3,1) while the right-
handed fermions E, U, D as ~ (1, 3). As explained in [26], by
assuming that a discrete S3, x S3 is left survived in the spon-
taneous breaking of SO(3)r x SO(3)r, the charged fermion
mass matrices must have the democratic structure. To write
down an invariant term, we introduce a weak scalar singlet
®;; ~ (3,3) bi-triplet with respect to SO(3); x SO(3)g. The
charged fermion masses arise from the following Lagrangian

@;; @i
Lo= hleaﬁHc‘}‘Lij% + heqpHP Q?Uj%
@..
+hd6aﬁH,‘j‘Qij#, )

where H,, H; are the scalar components of usual weak dou-
blets of the MSSM. The constants 4', k", and h? are of order
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explicitly

SO(3)1 x SO(3)r

spontaneously
by (®)

SgL X SaR
(charged fermion 3rd family masses)

» Ay

spontaneously

by (#)
Z3

(charged fermion 1st and 2nd family masses and mizing)

spontaneously

by (¢')

\/

Za

(Neutrino masses and mizing, Cabibbo angle)

spontaneouslyl

Nothing
(Sub-dominant quark mizing angles)

Fig. 1. Diagrammatic representation of the flavor symmetry structure of the model. The horizontal arrow indicates the explicit global symmetry breaking
SO(3)p, x SO(3)r — Ay due to the Yukawa terms induced by a hidden scalar sector. The vertical arrows show the spontaneous breaking. The hierarchy among the

masses is not directly related to the mixing angles.

Table 1

The supermultiplet content of the model. We have denoted ws the discrete charge that satisfy wg =1

MSSM fields Fields of the explicit breaking into A4

L 0 E 0 b A, Ay o A A b ¢ ¥
Weak SU(2) 2 2 1 1 1 2 2 1 3 3 1 1
SO(3) x SO(3) 3D 3.1 1, 3) 1, 3) 1. 3) D (O3 )] 3.3
Ay 3 3 3 3 3 1 1 1 1 3 3 v
Zs 1 1 1 1 1 1 1 1 w? ? 1 w} w?

one while A is a cut-off. The «, 8 and i, j are weak and fla-
vor indices, respectively, and €y is the antisymmetric tensor. In
Ref. [26] has been shown that the minimization of a potential,
invariant with respect to SO(3);, x SO(3)g, leads S3, x Sz, in-
variant vev. The scalar field @;; will take its vev in the direction

1 11
(<D)<x<l 1 1), (5)
1 1 1

and the resulting charged fermion masses are the democratic
mass matrix.

The masses of the first and second families and that of
the neutrinos arise once we include, in the Yukawa La-
grangian of Eq. (4), terms that explicitly break the continu-
ous SO(3)1, x SO(3)r but that preserve the discrete diagonal
subgroup A4. For example, we can assume the presence of a
hidden scalar sector that breaks spontaneously the continuous
SO@3)1, x SO(3)r into the diagonal A4. The explicit breaking
terms will be of the form

8! st
L= Xeo,,ghrg(LﬁEqb) + Xeo,,ng(Q“qus)

84 _
+ e H (0P DY) + %s’( “ons LP) A,

y
+ (¢'L¥o5 LP) Ay, (6)

where the fields in Eq. (6) transform according to Table 1 and
A is the cut-off scale of the model. The labels «, 8 are again
weak indices, o are the Pauli matrices and A,, A, are weak
triplets, as reported in Table 1. We have introduced an ad-
ditional Z5 symmetry that affects only the scalar sector and
avoids the presence of unwanted Yukawa couplings as done
for instance in [8,14]. We remember that, if a = (ay, ay, a3)
and b = (b1, by, b3) are two Ay triplets, then 1 ~ (ab) =
(a1by + azby + azbs), ' ~ (ab)' = (a1by + w’arb; + wazbs)
and 1" ~ (ab)" = (a1by + wazb; + w?azb3) [5].

Under the hypothesis that the breaking of SO(3); x SO(3)r
into A4 happens in a hidden scalar sector and then it is trans-
mitted to the fermions through the integration of the heavy
fields, it is quite natural to assume that the explicit breaking
terms in Eq. (6), to be added to the Lagrangian of Eq. (4),
are small. To get more familiar with the embedding of A4
into SO(3)r x SO(3)R, we report the decomposition of some
representations of SO(3); x SO(3)r into the representations
of A4 in Table 2. The correspondences for the fundamental
representations are obvious. We can spend few words on the
bi-fundamental. The (3, 3) representation of SO(3);, x SO(3)r
gives the irreducible representations 1 4+ 3 4+ 5 when the group
is broken to the diagonal SO(3) that in turn give 1 + 3 +
1 +1” + 3 when SO(3) is broken into A4 as explained
in [33].
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Table 2

Decomposition of some representations of SO(3) 7, x SO(3) g into the represen-
tations of Ay4. To clarify the decompositions, we also report the representations
under SO(3) diagonal

SO3); x SO(3)g 50(3) Ay

3.1 3 3

1,3) 3 3

3,3 1+3+5 14+34+1+1"4+3

When ¢ takes vev as (@) = vy(1,1,1) we have for the
charged leptons

81
~€op HY(LPE}) = eas HS [V (LY Es + LEE, + LV E»)

+ (LB + LV Es + LEEY)), (7)

with yl.l = 8ll.v¢ /A and the two §; arise by the two different con-
tractions of A4. Similar expressions are obtained for the quarks.
The effect of the explicit breaking terms in the mass matrices
is translated in a perturbation of the democratic mass matrix
of Eq. (5), that is

f/1 1 1 f
Mf:m_3 1 1 1 _>m_3
3\ 1 3

L 14y 14y

l+y2f 1 1+7/]f
l+y]f l+yf 1

f f f
hy hy  hy
=vy h2f hg hlf ) (®)
fof 4 f
hi hy hy

with the obvious correspondences m{ /3=v fh(]; =vrve/A,

vfh{i2 =1+ ylf’z) -m§/3 and vy = v, 4. The mass matrix of

Eq. (8) is diagonalized by

_ 1 ( o o 1

Up=—|0?* o 1) , )
3\t 1

corresponding to the U of Eq. (2) withd =n /4, =27/3, 8 =
57/6 and y = /2. M7 of Eq. (8) gives an heavy 3rd family
mass m{ and small 1st and 2nd family masses satisfying

ml oyl +ov) ml oyl +oy) w0
] 50w 3

2.2. Neutrino sector

The Yukawa interactions for the neutrinos are the following
Lo= =8 (L ousLP) Ay + 2 (¢/ L o LP) A", (1n

where the scalars &’ and ¢’ are singlets of the weak SU(2).
and transform with respect to A4 as 1’ and 3, respectively. The
scalars A and A are singlets of A4 and triplets of the weak
SU(2) . When the triplet field ¢’ takes vev in the A4 direction
(¢) ~ (0, 0, 1)—notice that this alignment is different from the
one used in many models as for example in [5,8], the resulting

neutrino mass matrix is given by

a b 0
M, = (b wa 0 )
0 0 &%

_(oPa+b 0 0 )
= v( 0 w?a 0 )VUT,
0 0 —w?a+b
2
w 0]
I -
=l o ;o (12)

V2 V2
0 1 0

The charged leptons are diagonalized by L — U, L, so we ob-
tain a tribimaximal mixing for the lepton sector, that is

2

1
% 0

Vemns =07V, = —%@ % —ﬁ (13)
L 1
Vo Vi 2

and the neutrino masses result to have the same expressions
of [8].

2.3. The origin of the Cabibbo angle

In Eq. (6) we have reported the leading A4 invariant terms
that arise after the explicitly breaking of SO(3);, x SO(3)g. We
include now the higher order operators suppressed by powers
of the cut-off scale A. The first terms at order 1/A? that change
the structure of the charged fermion mass matrices above are

/¢!

d)ASZ ) +g”€a/3H,f<QaU¢;‘i )

L3=glespHY (LﬂE

+g"eaﬂH§‘<QﬂDa—i>. (14)

With the inclusion of these contributions the charged fermion
mass matrices of Eq. (8) become

foaf o f
hO hl h2
M =vs| k) hof hl | — Ml
foaf o f
hl h2 hO

f f o f

hy, hy +3p]  hy

f f f f
hy +3p; h hi |,

ni hoohg

:vf

where vy = vy 4, 3,0if ~ gifv¢,/vg/A2. The gl.f, i =1,2, arise
from the possible different contractions of 3-plet of A4 to give
a singlet 1” and the factor 3 is introduced to simplify the sub-
sequent formulas. In the basis rotated by U,, of Eq. (9), namely
MI=U aT)M éfﬁﬁw, the charged fermion mass matrices are now

approximatively given by

r'lf+6{w+e'2fw2 e{.+6‘2f e'lfw2+6'2fw

Mf%f)f elf-i-e{ rzf-l—elfwz-&-e{w elf-i-a)ze{ )
e{wz + E'sz e{ +w26'2f r3f + e'lf + e*zf

(15)
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where rif = mlf/ﬁf, Uy =vsvep/A and eif = ,oif/ﬁf. Let us

assume that the eif are arbitrary parameters of O(1>), where
A is the Cabibbo angle. The crucial point is that this assump-
tion has the consequences that the higher order operators give
negligible effects in the down and charged lepton sectors, since
for the down and charged leptons we have (ri“, rg ’[, réj ’l) ~
(A*, 22, 1) and M?! may be considered diagonals. On the con-
trary for the up quarks we have that (+i, 7y, r%) ~ (A7, A%, 1)
and therefore the off-diagonal entries (1,2) and (2, 1) cannot
be neglected: the matrix M* is diagonalized by a rotation in the
12 plane with sinfj, ~ A. This rotation produces the Cabibbo
angle in the CKM. In fact while M is still diagonalized by U,
we have that M" is diagonalized by VL"TU(ZM “U,Vy where
VZ r are unitary matrix, rotations in the 12 plane, and therefore
the CKM mixing matrix is given by

Vekm = V¥ UL U, = VY.

The charm and top quark masses are almost unaffected by the
corrections and still are given by v,r; and v,753, respectively.
The up quark mass is obtained by tuning the €' and is given
more or less by

my ~ by (€l w + €5 w?).

In [13] the full CKM was obtained by breaking the Z, sym-
metry that survives when a triplet of A4 takes vev in the di-
rection (1,0,0). In our model we suggest that the origin of
the Cabibbo angle is instead in the A4 invariant subleading
corrections to the Yukawa interactions. The breaking of the
residual Z, symmetry allows instead to generate the complete
CKM. The main difference between our model and some pre-
vious models, where the subleading corrections in the charged
fermion matrix are too small to generate a Cabibbo angle in or-
der to keep the lepton mixing angles inside the bounds given
by the experimental data, is related to the different assignment
and the U(1) flavor symmetry one introduces in order to ex-
plain the mass hierarchies. For example, in [32] the left-handed
fields belonged to a triplet of A4, while at the right-handed
fields was given the assignment 1,1”,1" and they have U (1)
charges (2¢, g, 0) where ¢ is a real number.

3. Grand unified group SO(10) x SU(3)

As already explained in the introduction our final aim would
be the construction of a grand unified SO(10)-like model. Let
us assume the group A4 as flavor symmetry and the “constrain”
of assigning right and left-handed fermion fields to the same
representations. Since A4 has four irreducible representations,
three singlets 1, 1" and 17, and a triplet 3, clearly we have just
few possibilities. For example if we assign the three 16-plets to
1, 1’ and 1” we obtain a mass matrix for the charged fermions
of the form

a 0 O
M= (O 0 ﬁ) , (16)
0 B8 0

where « and B are arbitrary parameters, that gives for instance
the wrong prediction m, = m;. The situation is better only when

the three 16-plets transform as a triplet of A4. Indeed, it has
been showed in [5] that the assignment of both left-handed and
right-handed SM fields to triplets of A4, that is therefore com-
patible with SO(10), can be lead to the charged fermion textures
proposed by Ma [4] and given by

fopf
hO hl h2
My=\hi nl nl|. (17)
fopf ot
hl h2 hO

with hg ,h{ and hg distinct parameters. In [5], in order to
obtain a mass matrix of the form of My in Eq. (17) with-
out spoiling the predictions of the neutrino sector, higher or-
der operators were introduced containing simultaneously the
SO(10) representations 4573z and 45y that took vevs in the
isospin and hypercharge directions respectively. A renormaliz-
able SO(10) x A4 model has been recently studied in [34] where
however the A4 flavor symmetry does not enforce a tribimaxi-
mal mixing in the lepton sector.

The group SO(3)1, x SO(3)r is not compatible with SO(10)
since the 16-plet contains both left-handed and right-handed
fields that belong to different representations of SO(3); x
SO(3)r. We have therefore to search for a continuous group
larger than SO(3), x SO(3) g, with rank bigger than 2 + 2 =4,
and that has a triplet as fundamental representation. The group
SU(3) seems us a good candidate. The scalar field @;; ~ (3, 3)
of the model we have just considered will correspond to the 6
representation of SU(3) whose vev is compatible with the de-
mocratic mass matrix.

Without entering into the details of the realization of an
SO(10) x SU(3) model [35-39] that we leave for a future work,
we want to suggest how its realization could be achieved using
non-renormalizable operators. We can think that such operators
arise by integrating out some heavy extra fermions that are cou-
pled to the matter fields at the renormalizable level, for instance
see [40-43]. The effective SO(10) invariant Lagrangian could
be

L=_Lsyz) +8La,.

where Lgy3) is SO(10) x SU(3) invariant and 6L 4, is the ex-
plicit breaking term of the SU(3) symmetry that, at this level,
leaves SO(10) unbroken. In particular the SU(3) invariant term
is

Lsu@) =1161610p457,,45y,

where 10p transforms as (10, 6) with respect to SO(10) x
SU(3). The scalar fields 457,, and 45y are singlets of SU(3)
and their vevs are proportional to the right-handed isospin and
to the hypercharge respectively. Thanks to the 457, and 45y
scalar fields, the above operator does not give any contribution
to the neutrino sector, while all the charged fermion mass matri-
ces are of democratic form if 10p takes vev along the direction
that preserves an S3 x S3 subgroup of SU(3). At this stage only
the 3rd family acquire a mass. The neutrino mass matrix and
the first and second families masses arise when we switch on
the explicitly breaking terms of SU(3)

8La, =1616126,, + 16161045, 45,
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where the scalar fields 12_6S, ; are a singlet 1" and a triplet of Ay,
respectively, the 45’T3R s 45’Y are other scalars that transform as
45 of SO(10), singlet and triplet of A4, respectively. The 10 is a
singlet of A4. It is not difficult to show that when type-II seesaw
is dominant, the first term in 5L 4, generates the light neutrino
mass matrix of the form of Eq. (12). The second term in § L4,
gives a contribution like in Eq. (6) and, after the breaking of
Ay into Z3, it generates the first and second family masses, see
Egs. (8)—(10).

4. Conclusions

In this Letter we have proposed an embedding of the discrete
A4 flavor symmetry in the larger continuous group SO(3) x
SO(3) g that explains in a natural way the huge hierarchy be-
tween the 3rd family charged fermion masses and the others
two. This is a consequence of the fact that SO(3);, x SOQ3)r
breaks spontaneously into S3; x S3r and gives a democratic
mass matrix that has only one massive eigenstate. If such eigen-
state is assumed to be the 3rd family state, we still have an unde-
terminated 12 angle in the charged fermion sector that is fixed
by breaking the democratic mass matrix. The crucial feature of
our model is that once we break explicitly SO(3); x SOQ3)r
into A4 we automatically generate first and second family
charged fermion masses m1 < m3. In order to fit the hier-
archy between the masses of the first and second families, we
require a tuning. Assuming that the light neutrino Yukawa in-
teractions come from the couplings with an A4 singlet & ~ 1/
and an A4 triplet ¢’ that are scalar electroweak singlets and that
¢’ acquires vev in the direction (0, 0, 1), we have showed that
the lepton mixing matrix is the tribimaximal one. The CKM is
given by the identity matrix. Afterward we suggest how to gen-
erate the Cabibbo angle in the quark sector through the intro-
duction of higher order corrections. In particular in our model
higher order operators give corrections of the same magnitude
in each entries of all charged fermion mass matrices. Assuming
that the ratio between the correction and m. is of the order of
the Cabibbo angle A, we obtain that a rotation of order A in the
12 plane appears in the up mass matrix. However the down and
charged lepton mass matrices are almost unaffected by correc-
tions. This mismatching gives up to the Cabibbo angle.

Finally we have briefly discussed an SO(10) realization of
our model where the flavor group SO(3); x SO(3)g is enlarged
to SU(3) and the democratic structure should arise from the vev
of a scalar that transform as a 6 of the flavor group SU(3).

Acknowledgements

Work supported by MEC grants FPA2005-01269 and
FPA2005-25348-E, by Generalitat Valenciana ACOMP06/154.

References

[1] F. Feruglio, Nucl. Phys. B (Proc. Suppl.) 143 (2005) 184, hep-ph/0410131.
[2] M. Picariello, hep-ph/0703301.
[3] M. Picariello, hep-ph/0611189.
[4] E. Ma, Mod. Phys. Lett. A 21 (2006) 2931, hep-ph/0607190.
[5] S. Morisi, M. Picariello, E. Torrente-Lujan, Phys. Rev. D 75 (2007)
075015, hep-ph/0702034.
[6] K.S. Babu, E. Ma, J.W.E. Valle, Phys. Lett. B 552 (2003) 207, hep-
ph/0206292.
[7] E. Ma, Mod. Phys. Lett. A 19 (2004) 577, hep-ph/0401025.
[8] G. Altarelli, F. Feruglio, Nucl. Phys. B 720 (2005) 64, hep-ph/0504165.
[9] F. Feruglio, et al., Nucl. Phys. B 775 (2007) 120, hep-ph/0702194.
[10] A. Zee, Phys. Lett. B 630 (2005) 58, hep-ph/0508278.
[11] K.S. Babu, X.G. He, hep-ph/0507217.
[12] M. Hirsch, et al., hep-ph/0703046.
[13] X.G. He, Y.Y. Keum, R.R. Volkas, JHEP 0604 (2006) 039, hep-
ph/0601001.
[14] F. Bazzocchi, S. Kaneko, S. Morisi, arXiv: 0707.3032 [hep-ph].
[15] E. Ma, arXiv: 0705.0327 [hep-ph].
[16] P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530 (2002) 167,
hep-ph/0202074.
[17] W. Grimus, L. Lavoura, Acta Phys. Pol. B 34 (2003) 5393, hep-
ph/0310050.
[18] C.Y. Chen, L. Wolfenstein, arXiv: 0709.3767 [hep-ph].
[19] Q. Duret, B. Machet, arXiv: 0706.1729 [hep-ph].
[20] M.C. Chen, K.T. Mahanthappa, Phys. Lett. B 652 (2007) 34, arXiv:
0705.0714 [hep-ph].
[21] M.C. Chen, AIP Conf. Proc. 928 (2007) 153, arXiv: 0706.2168 [hep-ph].
[22] C. Luhn, S. Nasri, P. Ramond, Phys. Lett. B 652 (2007) 27, arXiv:
0706.2341 [hep-ph].
[23] N. Nimai Singh, H. Zeen Devi, M. Patgiri, arXiv: 0707.2713 [hep-ph].
[24] C. Luhn, S. Nasri, P. Ramond, arXiv: 0709.1447 [hep-ph].
[25] P. Kaus, S. Meshkov, Phys. Rev. D 42 (1990) 1863.
[26] M. Tanimoto, T. Watari, T. Yanagida, Phys. Lett. B 461 (1999) 345, hep-
ph/9904338.
[27] H. Fritzsch, J. Plankl, Phys. Lett. B 237 (1990) 451.
[28] H. Fritzsch, D. Holtmannspotter, Phys. Lett. B 338 (1994) 290, hep-
ph/9406241.
[29] H. Fritzsch, Z.-z. Xing, Phys. Lett. B 440 (1998) 313, hep-ph/9808272.
[30] H. Harari, H. Haut, J. Weyers, Phys. Lett. B 78 (1978) 459.
[31] H. Fritzsch, Z.-z. Xing, Phys. Lett. B 598 (2004) 237, hep-ph/0406206.
[32] G. Altarelli, F. Feruglio, Nucl. Phys. B 741 (2006) 215, hep-ph/0512103.
[33] C. Hagedorn, M. Lindner, R.N. Mohapatra, JHEP 0606 (2006) 042, hep-
ph/0602244.
[34] W. Grimus, H. Kuhbock, arXiv: 0710.1585 [hep-ph].
[35] S. Antusch, S.F. King, M. Malinsky, arXiv: 0708.1282 [hep-ph].
[36] Y. Koide, arXiv: 0705.2275 [hep-ph].
[37] S.F. King, G.G. Ross, Phys. Lett. B 574 (2003) 239, hep-ph/0307190.
[38] S.E. King, G.G. Ross, Phys. Lett. B 520 (2001) 243, hep-ph/0108112.
[39] J.L. Chkareuli, C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 626 (2002)
307, hep-ph/0109156.
[40] M. Malinsky, arXiv: 0710.0581 [hep-ph].
[41] D. McKeen, J.L. Rosner, A.M. Thalapillil, hep-ph/0703177.
[42] Z. Berezhiani, Z. Tavartkiladze, Phys. Lett. B 409 (1997) 220, hep-
ph/9612232.
[43] S.M. Barr, arXiv: 0706.1490 [hep-ph].



	Embedding A4 into left-right flavor symmetry:  Tribimaximal neutrino mixing and fermion hierarchy
	Introduction
	Mass of the 3rd family from the left-right flavor symmetry
	Explicitly breaking of SO(3)LxSO(3)R into A4
	Neutrino sector
	The origin of the Cabibbo angle

	Grand unified group SO(10)xSU(3)
	Conclusions
	Acknowledgements
	References


