91 research outputs found

    A spin- and angle-resolved photoemission study of coupled spin-orbital textures driven by global and local inversion symmetry breaking

    Get PDF
    The effect of spin-orbit coupling had once been thought to be a minor perturbation to the low energy band structure that could be ignored. Instead, a surge in recent theoretical and experimental efforts have shown spin-orbit interactions to have significant consequences. The main objective of this thesis is to investigate the role of the orbital sector and crystal symmetries in governing the spin texture in materials that have strong spin-orbit interactions. This can be accessed through a combination of spin- and angle-resolved photoemission spectroscopy (ARPES and spin-ARPES), both of which are powerful techniques for probing the one-electron band structure plus interactions, and supported by density functional theory calculations (DFT). We focus first on a globally inversion asymmetric material, the layered semiconductor BiTeI, which hosts a giant spin-splitting of its bulk bands. We show that these spin-split bands develop a previously undiscovered, momentum-space ordering of the atomic orbitals. We demonstrate this orbital texture to be atomic element specific by exploiting resonant enhancements in ARPES. These orbital textures drive a hierarchy of spin textures that are then tied to the constituent atomic layers. This opens routes to controlling the spin-splitting through manipulation of the atomic orbitals. This is contrasted against a material where inversion symmetry is globally upheld but locally broken within each monolayer of a two layer unit cell. Through our ARPES and spin-ARPES measurements of 2H-NbSe₂, we discover the first experimental evidence for a strong out-of-plane spin polarisation that persists up to the Fermi surface in this globally inversion symmetric material. This is found to be intrinsically linked to the orbital character and dimensionality of the underlying bands. So far, previous theories underpinning this (and related) materials’ collective phases assume a spin-degenerate Fermi sea. We therefore expect this spin-polarisation to play a role in determining the underlying mechanism for the charge density wave phase and superconductivity. Through these studies, this thesis then develops the importance of global versus local inversion symmetry breaking and uncovers how this is intricately tied to the underlying atomic orbital configuration

    Negative electronic compressibility and tunable spin splitting in WSe2

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council, UK (Grant Nos. EP/I031014/1, EP/M023427/1, EP/L505079/1, and EP/G03673X/1), TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. PDCK acknowledges support from the Royal Society through a University Research Fellowship. MSB was supported by the Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.Tunable bandgaps1, extraordinarily large exciton-binding energies2, 3, strong light–matter coupling4 and a locking of the electron spin with layer and valley pseudospins5, 6, 7, 8 have established transition-metal dichalcogenides (TMDs) as a unique class of two-dimensional (2D) semiconductors with wide-ranging practical applications9, 10. Using angle-resolved photoemission (ARPES), we show here that doping electrons at the surface of the prototypical strong spin–orbit TMD WSe2, akin to applying a gate voltage in a transistor-type device, induces a counterintuitive lowering of the surface chemical potential concomitant with the formation of a multivalley 2D electron gas (2DEG). These measurements provide a direct spectroscopic signature of negative electronic compressibility (NEC), a result of electron–electron interactions, which we find persists to carrier densities approximately three orders of magnitude higher than in typical semiconductor 2DEGs that exhibit this effect11, 12. An accompanying tunable spin splitting of the valence bands further reveals a complex interplay between single-particle band-structure evolution and many-body interactions in electrostatically doped TMDs. Understanding and exploiting this will open up new opportunities for advanced electronic and quantum-logic devices.PostprintPeer reviewe

    Training pediatric health care providers in prevention of dental decay: results from a randomized controlled trial

    Get PDF
    Background: Physicians report willingness to provide preventive dental care, but optimal methods for their training and support in such procedures are not known. This study aimed to evaluate the effect of three forms of continuing medical education (CME) on provision of preventive dental services to Medicaid-enrolled children by medical personnel in primary care physician offices. Methods: Practice-based, randomized controlled trial. Setting: 1,400 pediatric and family physician practices in North Carolina providing care to an estimated 240,000 Medicaid-eligible children aged 0–3 years. Interventions: Group A practices (n = 39) received didactic training and course materials in oral health screening, referral, counseling and application of fluoride varnish. Group B practices (n = 41) received the same as Group A and were offered weekly conference calls providing advice and support. Group C practices (n = 41) received the same as Group B and were offered in-office visit providing hands-on advice and support. In all groups, physicians were reimbursed 38–38–43 per preventive dental visit. Outcome measures were computed from reimbursement claims submitted to NC Division of Medical Assistance. Primary outcome measure: rate of preventive dental services provision per 100 well-child visits. Secondary outcome measure: % of practices providing 20 or more preventive dental visits. Results: 121 practices were randomized, and 107 provided data for analysis. Only one half of Group B and C practices took part in conference calls or in-office visits. Using intention-to-treat analysis, rates of preventive dental visits did not differ significantly among CME groups: GroupA = 9.4, GroupB = 12.9 and GroupC = 8.5 (P = 0.32). Twenty or more preventive dental visits were provided by 38–49% of practices in the three study groups (P = 0.64). Conclusion: A relatively high proportion of medical practices appear capable of adopting these preventive dental services within a one year period regardless of the methods used to train primary health care providers.Gary D Slade, R Gary Rozier, Leslie P Zeldin, and Peter A Margoli

    Tuneable electron-magnon coupling of ferromagnetic surface states in PdCoO2

    Get PDF
    Funding: We gratefully acknowledge support from the European Research Council (through the QUESTDO project, 714193), the Royal Society, the Max Planck Society, and the UKRI Engineering and Physical Sciences Research Council (Grant No. EP/S005005/1). V.S., O.J.C., and L.B. acknowledge the EPSRC for PhD studentship support through Grants EP/L015110/1, EP/K503162/1, and EP/G03673X/1, respectively. I.M. and D.C. acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials.Controlling spin wave excitations in magnetic materials underpins the burgeoning field of magnonics. Yet, little is known about how magnons interact with the conduction electrons of itinerant magnets, or how this interplay can be controlled. Via a surface-sensitive spectroscopic approach, we demonstrate a strong and highly-tuneable electron-magnon coupling at the Pd-terminated surface of the delafossite oxide PdCoO2, where a polar surface charge mediates a Stoner transition to itinerant surface ferromagnetism. We show how the coupling can be enhanced 7-fold with increasing surface disorder, and concomitant charge carrier doping, becoming sufficiently strong to drive the system into a polaronic regime, accompanied by a significant quasiparticle mass enhancement. Our study thus sheds new light on electron-magnon interactions in solid-state materials, and the ways in which these can be controlled.Publisher PDFPeer reviewe

    The economics of Theocracy

    Get PDF
    This paper models theocracy as a regime where the clergy in power retains knowledge of the cost of political production but which is potentially incompetent or corrupt. This is contrasted with a secular regime where government is contracted out to a secular ruler, and hence the church loses the possibility to observe costs and creates for itself a hidden-information agency problem. The church is free to choose between regimes – a make-or-buy choice – and we look for the range of environmental parameters that are most conducive to the superiority of theocracy and therefore to its occurrence and persistence, despite its disabilities. Numerical solution of the model indicates that the optimal environment for a theocracy is likely to be one in which the “bad” (high-cost) state is disastrously bad but the probability of its occurrence is not very high. A broad review of the historical evidence yields some suggestive support to the predictions of the model. Finally, the model is shown to be applicable to the make-or-buy-government choices of other groups, such as organized labor and the military

    Fermiology and superconductivity of topological surface states in PdTe2

    Get PDF
    We gratefully acknowledge support from the Leverhulme Trust, the Engineering and Physical Sciences Research Council, UK (Grant Nos. EP/M023427/1 and EP/I031014/1), the Royal Society. JC, MJN, LB, VS, and JMR acknowledge EPSRC for PhD studentship support through grant Nos. EP/K503162/1, EP/G03673X/1, EP/L505079/1, and EP/L015110/1.We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.PostprintPeer reviewe

    Dual quantum confinement and anisotropic spin splitting in the multi-valley semimetal PtSe2

    Get PDF
    The authors gratefully acknowledge support from the Leverhulme Trust (Grant No. RL-2016-006), the Royal Society, the European Research Council (Grant No. ERC-714193QUESTDO) CREST, JST (No. JPMJCR16F1), and the International Max-Planck Partnership for Measurement and Observation at the Quantum Limit. OJC, VS, and LB acknowledge EPSRC for PhD studentship support through grant Nos. EP/K503162/1, EP/L015110/1 and EP/G03673X/1. IM acknowledges PhD studentship support from the IMPRS for the Chemistry and Physics of Quantum Materials.We investigate the electronic structure of a two-dimensional electron gas created at the surface of the multivalley semimetal 1T−PtSe2. Using angle-resolved photoemission and first-principles-based surface space-charge calculations, we show how the induced quantum well sub-band states form multiple Fermi surfaces, which exhibit highly anisotropic Rashba-like spin splittings. We further show how the presence of both electronlike and holelike bulk carriers causes the near-surface band bending potential to develop an unusual nonmonotonic form, with spatially segregated electron accumulation and hole accumulation regions, which in turn amplifies the induced spin splitting. Our results thus demonstrate the novel environment that semimetals provide for tailoring electrostatically induced potential profiles and their corresponding quantum sub-band states.PostprintPeer reviewe

    Storing the wisdom: chemical concepts and chemoinformatics

    Get PDF
    The purpose of the paper is to examine the nature of chemical concepts, and the ways in which they are applied in chemoinformatics systems. An account of concepts in philosophy and in the information sciences leads to an analysis of chemical concepts, and their representation. The way in which concepts are applied in systems for information retrieval and for structure–property correlation are reviewed, and some issues noted. Attention is focused on the basic concepts or substance, reaction and property, on the organising concepts of chemical structure, structural similarity, periodicity, and on more specific concepts, including two- and three-dimensional structural patterns, reaction types, and property concepts. It is concluded that chemical concepts, despite (or perhaps because of) their vague and mutable nature, have considerable and continuing value in chemoinformatics, and that an increased formal treatment of concepts may have value in the future

    Theatre des Femmes

    Get PDF
    We study the electronic structure of the Pd-terminated surface of the non-magnetic delafossite oxide metal PdCoO2_2. Combining angle-resolved photoemission spectroscopy and density-functional theory, we show how an electronic reconstruction driven by surface polarity mediates a Stoner-like magnetic instability towards itinerant surface ferromagnetism. Our results reveal how this leads to a rich multi-band surface electronic structure, and provide spectroscopic evidence for an intriguing sample-dependent coupling of the surface electrons to a bosonic mode which we attribute to electron-magnon interactions. Moreover, we find similar surface state dispersions in PdCrO2_2, suggesting surface ferromagnetism persists in this sister compound despite its bulk antiferromagnetic order.Comment: 6 pages, 5 figure
    • 

    corecore