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Abstract
The effect of spin-orbit coupling had once been thought to be a minor

perturbation to the low energy band structure that could be ignored. In-
stead, a surge in recent theoretical and experimental efforts have shown
spin-orbit interactions to have significant consequences. The main objec-
tive of this thesis is to investigate the role of the orbital sector and crystal
symmetries in governing the spin texture in materials that have strong spin-
orbit interactions. This can be accessed through a combination of spin- and
angle-resolved photoemission spectroscopy (ARPES and spin-ARPES), both
of which are powerful techniques for probing the one-electron band struc-
ture plus interactions, and supported by density functional theory calcula-
tions (DFT).

We focus first on a globally inversion asymmetric material, the layered
semiconductor BiTeI, which hosts a giant spin-splitting of its bulk bands.
We show that these spin-split bands develop a previously undiscovered,
momentum-space ordering of the atomic orbitals. We demonstrate this or-
bital texture to be atomic element specific by exploiting resonant enhance-
ments in ARPES. These orbital textures drive a hierarchy of spin textures
that are then tied to the constituent atomic layers. This opens routes to con-
trolling the spin-splitting through manipulation of the atomic orbitals.

This is contrasted against a material where inversion symmetry is glob-
ally upheld but locally broken within each monolayer of a two layer unit
cell. Through our ARPES and spin-ARPES measurements of 2H-NbSe2, we
discover the first experimental evidence for a strong out-of-plane spin polar-
isation that persists up to the Fermi surface in this globally inversion sym-
metric material. This is found to be intrinsically linked to the orbital char-
acter and dimensionality of the underlying bands. So far, previous theories
underpinning this (and related) materials’ collective phases assume a spin-
degenerate Fermi sea. We therefore expect this spin-polarisation to play a
role in determining the underlying mechanism for the charge density wave
phase and superconductivity.

Through these studies, this thesis then develops the importance of global
versus local inversion symmetry breaking and uncovers how this is intri-
cately tied to the underlying atomic orbital configuration.
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Chapter 1

Motivation

1.1 Importance of the spin-orbit interaction

How electrons behave in the solid state is one of the most fundamental

and important questions in condensed matter. It has underpinned a great

deal of theoretical progress and technological applications in the last cen-

tury such as the now ubiquitous field effect transistor (FET) and multiple

Nobel prizes. One active vein of research has then been to attempt to sur-

pass the intrinsic limit in efficiency imposed by the heat dissipation and

size restrictions in conventional semiconductor FETs. A possible route is

through the ability to manipulate the spin degree of freedom that electrons

possess. However, in the solid state, there is a degeneracy of the spin-up

and spin-down electrons enforced by two symmetries: inversion symmetry

and time reversal symmetry. It is well known that application of a magnetic

field can lift the inherent spin-degeneracy, breaking time reversal symmetry

within a Stoner picture (fig. 1.1b). On the other hand, a spin-splitting can

be achieved without magnetism through breaking inversion symmetry in

the solid state, in combination with spin-orbit coupling. This is a relativistic

effect that has historically often been neglected but now is experiencing a

resurgence in condensed matter in pure academic research and technologi-

cal applications alike [1].

Through the spin-orbit interaction, an electron moving relativistically

through an electric field can experience this in its own rest frame as an effec-

tive magnetic field. This effective magnetic field (the spin-orbit field), can
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a b c

Time reversal symmetry

Inversion symmetry

Time reversal symmetry

Inversion symmetry

Time reversal symmetry

Inversion symmetry

FIGURE 1.1: a) Nearly-free electronic dispersion relation for
a parabolic band with spin-degenerate electrons. b) Zeeman
splitting from an applied magnetic field, breaking time re-
versal symmetry but preserving inversion symmetry. Elec-
trons spin-polarised in the z direction c) Rashba splitting
from a broken inversion symmetry (and preserved time re-
versal symmetry). Electrons spin-polarised in the x-y plane

according to the spin-orbit field.

then couple to the intrinsic magnetic moment the electron possessess, re-

lated to its spin. In the solid state, in the presence of an inversion symmetry

breaking, spin-orbit interactions can lift the inherent spin-degeneracy, often

through the so-called Rashba effect [2]. In the case of inversion symmetry

breaking normal to the sample surface, Rashba spin-splitting leads to states

spin-polarised within the sample plane (fig. 1.1c).

This spin-splitting without magnetism is then a key ingredient in a con-

cept device which would surpass the conventional semiconductor FET. The

idea proposed by Datta and Das was a spin-FET [3] (fig. 1.2). Spin-polarised

contacts are used to inject and detect spins (the source and drain) of a given

orientation and a semiconductor with strong spin-orbit coupling is used as

the gated channel. The gate then provides a tuneable electric field which in-

duces a tuneable spin-splitting through the Rashba effect. A spin-splitting is

required such that there is a precession of the electron’s spin in the spin-orbit

field through the gated channel (in analogy to Larmor precession in a mag-

netic field). The channel length and the gate voltage (or equivalently the

spin-splitting) then dictate the precession length. Spin-precession of mul-

tiples of 2π then equate to a current being detected as the spin will have

precessed such that it is parallel with the drain spin (as in fig. 1.2). Suitable
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Source Drain

Gate

Spin-orbit semiconductor

FIGURE 1.2: A schematic spin field-effect-transistor (spin-
FET) according to Datta and Das [3]. Spin-polarised source
injects spins that are polarised in the z direction, which
travel through the semiconducting channel with momentum
kx. These precess in the x-z plane according to the spin-orbit
field BSO, induced by the electric field Ez supplied by the
gate voltage. These can be detected in the spin-polarised
drain if they have precessed such they align with the drain
spin-polarisation. The precession is proportional to the spin-

splitting, which is tuneable by the gate voltage.

candidates for the spin-orbit semiconducting channel have renewed inter-

est in spin-orbit coupling in materials, with an emphasis on understanding

and controlling of the size of the spin-splitting (a comprehensive review on

spin-splitting at surfaces has been published by Krasovskii [4]).

In addition to this more device oriented application, the spin-orbit inter-

action has prompted a surge of interest as the key ingredient in stabilising a

novel form of spin-polarised state: topological surface states [5, 6]. States ex-

isting as a product of the topology of the material have been known about

for some time, for example due to the quantum Hall effect [7, 8]. A bulk

material under an applied magnetic field, quantises the electron motion in

the bulk (normal to the applied field) into cyclotron orbits corresponding

to their Landau levels. However, at the edge these cyclotron orbits cannot

be formed and instead intersect with the boundary. These then form a sin-

gle conducting skipping mode around the edge of the material (fig. 1.3b).

This has the properties that it is chiral, with a handedness imposed by the

magnetic field. Additionally, it is a topological property, so the shape of the

material is unimportant: simply that the electrons are in cyclotron orbits in

the bulk means skipping modes will exist along the edge regardless of its
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FIGURE 1.3: a) An example band insulator having a gap be-
tween the conduction and valence bands. b) Quantum Hall
insulator with cyclotron orbits in the bulk and ‘skipping’
modes along the edge induced by the magnetic field applied
perpendicular to the surface. This gives a single metallic
state bridging the band gap with a positive group velocity
(in this example). c) Quantum spin-Hall state, where spin-
orbit coupling is necessary. Spin-up and spin-down elec-
trons have opposite momentum in the edge modes accord-
ing to time reversal symmetry, leading to two metallic states
that are spin-polarised bridging the gap. d) This effect in the
bulk leads to the well-known in-plane spin-polarised Dirac
cones of topological insulator surface states. Adapted from

[5].

shape or any deformations. It was later shown that a similar effect can lead

to topological surface states in certain materials even without an applied

magnetic field, as a consequence of spin-orbit interactions and time reversal

symmetry.

In such materials, spin-orbit coupling can drive an inversion of bands

with different parity in the bulk. If the bulk material with an inverted band

gap is interfaced with a material with a non-inverted band gap (e.g. the

topologically trivial vacuum), then conducting states must exist at the in-

terface between these materials. There is then a single state at the surface

which connects the bulk bands of opposite parity at the interface. Since this

is a spin-orbit effect, the electron spin degeneracy is lifted for these surface

states in a way which preserves time reversal symmetry. This implies that

a spin-up electronic state with positive momentum at the surface, necessi-

tates a spin-down electronic state with negative momentum at the surface

(fig. 1.3c). Topological surface states with opposite momentum are then not

spin-degenerate. There is a spin-polarised gapless surface state bridging the
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bulk band gap, which is protected as a property of the interface between two

materials with a different Z2 topological invariant (a quantity describing

topologically trivial or non-trivial materials). The spin-orbit interaction ad-

ditionally results in this spin-polarisation being strongly in-plane and chiral,

similar to the states in the Rashba model (fig. 1.3d). The difference is that,

for a given energy, there are now an odd number of spin-polarised states

between time reversal invariant points (fig. 1.3c), as opposed to the even

number as with the topologically trivial Rashba spin-split states. By now

topological states are rife, even found in materials that have been studied

for decades such as bismuth chalcogenide semiconductors [6] and transi-

tion metal dichalcogenides [9], both of which are a focus for this thesis.

Spin-orbit coupling has then resulted in a mounting interest in materi-

als with hidden exotic states in the spin and orbital sectors [1]. A detailed

understanding of how the spin degree of freedom affects the atomic orbitals

and vice versa is therefore vital to making progress. This thesis covers some

of our findings on this topic.

1.2 Organisation of thesis

This brings us to a breakdown of how the following chapters of the thesis

will unfold.

Chapter 2 gives an outline of some of the important concepts for the

behaviour of electrons in solids, including how this can be calculated and

interpreted. A key property of a solid is its electronic dispersion relation

contained within the one-electron band structure. We show how this can

arise by employing a tight binding picture, and then extend the result to real

materials by considering surfaces. This chapter then introduces the impor-

tant symmetry considerations in real materials and what effect the spin-orbit

interaction can have in their presence (or absence).

Chapter 3 provides insight into the experimental techniques employed

heavily in this thesis: spin- and angle-resolved photoemission spectroscopy
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(ARPES). These are techniques that can not only measure the electronic dis-

persion in a material but additionally probe the interactions with other elec-

trons and the solid itself. Through consideration of the theoretical frame-

work surrounding the photoemission process we show how we can selec-

tively probe the orbital character of the electronic structure. Further, through

spin-ARPES, the spin-resolved electronic structure can be inferred. These

techniques together provide an insight into the spin-orbit interaction in the

materials studied.

Chapter 4 begins by motivating spin-splitting at surfaces and how the

spin-splitting can be understood and controlled. We then introduce lit-

erature about an entirely new form of Rashba splitting, which has been

found to occur in the bulk of a non-centrosymmetric semiconductor BiTeI, a

topologically trivial analogue to the bismuth chalcogenide topological in-

sulators. Through our research, we demonstrate that this material hosts

a momentum-space ordering of the atomic orbitals, reminiscent of work

on its topological counter-part. The chiral ordering of the orbitals, which

switches through the Dirac point, makes this effectively an orbital-analogue

of the Rashba effect. This shows that there are consequences of the spin-

orbit interaction beyond the conventional expectation for the spin degree of

freedom, potentially offering manipulation of the spin-polarisation and the

spin-splitting through the orbital sector.

Chapter 5 focusses on the bulk transition metal dichalcogenide (TMD)

NbSe2, a globally centrosymmetric metal with instabilities to a charge den-

sity wave and superconducting phase at low temperature. It is shown how

bulk TMDs can be understood as multilayer graphene analogues, with bro-

ken sublattice symmetry and strong spin-orbit interactions. In these materi-

als, the global inversion symmetry should lead to a complete enforced spin-

degeneracy through Kramer’s theorem. However, through our research, we

show that this material hosts a strong out-of-plane spin-polarisation even

in the bulk, arising from a local inversion symmetry breaking within each

layer. This suggests the spin to be a relevant quantity to consider in the

collective phases, which has previously been overlooked in this material.
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Before expanding on the main results underpinning this thesis and their

impact on the community, we will therefore start discussing the most funda-

mental and important concept of how electrons generally behave in solids.
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Chapter 2

Scientific Background

2.1 Electrons in solids

To begin to understand the foundations of how electrons behave in solids,

relevant theory underpinning our research presented will be summarised.

This information is covered in multiple well known textbooks [10–14]: this

chapter draws mainly from [12–14]. This thesis will explore the effect of the

orbital degree of freedom, and the spin-orbit interaction on electronic struc-

ture in solids. A simple and intuitive way to interpret and implement this

is through the tight-binding method, and analysis of such models will form

part of the results presented.

Understanding and manipulating how the electrons behave is the ulti-

mate goal of condensed matter and a general starting point is the many-

particle Schödinger equation:

H|Ψ〉 = E|Ψ〉 (2.1)

where |Ψ〉 is the wavefunction of the electrons in the solid, E their energy

and H is the Hamiltonian of the system. The Hamiltonian describing the

kinetic energy and Coulomb interactions between the ions of a lattice and

the electrons can be given by [14]:

H =
∑
i

p2
i

2mi
+
∑
j

P 2
j

2Mj
+

1

2

∑
j′,j

′ ZjZj′e
2

|Rj −Rj′ |
−
∑
j,i

Zje
2

|ri −Rj |
+

1

2

∑
i′,i

′ e2

|ri − ri′ |
(2.2)

where ri (Rj) denotes the position vector of the ith electron (jth nucleus),
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pi (P j) is the momentum operator, mi (Mj) is the mass of the electron (nu-

cleus), Zj is the atomic number of the nucleus, and e is the electronic charge.

The
∑ ′ indicates to not include the term with identical indices to avoid

a divergence (which physically just corresponds to a particle not having a

Coulomb interaction with itself). Practically, it is difficult to solve this for all

electrons in the system and so we need to make simplifying assumptions.

Two such assumptions are often made. The first is that the atomic nuclei

of the lattice move slowly (or not at all) compared with the much lighter

electrons so these are independent (the adiabatic approximation) [13]. The

Hamiltonian (eq. 2.2) can then be separated into parts as such:

H = Hions(Rj) +He(ri,Rj0) +He−ion(rj , δRj), (2.3)

where the first term describes purely the ionic part, the second term de-

scribes the electronic part for fixed ion positionsRj0, and the third term de-

scribes interactions between electrons and ions (an electron-phonon term),

for ions shifted from their equilibrium positions by δRj .

Another approximation typically made is that the electrons do not inter-

act with each other, except through the static potential set up in screening

the positive charge of the atomic nuclei (the one electron approximation)

[13]. This is equivalently described as a mean field approximation, in which

the electrons are all said to experience the same averaged potential V (r)

[14]. Considering just the electronic sector, within the one-electron approx-

imation, the Schödinger equation for each of the n electrons can be written:

H1eΨn(r) =

(
p2

2m
+ V (r)

)
Ψn(r) = EnΨn(r), (2.4)

where H1e, Ψn(r) and En denote the one-electron Hamiltonian, the wave-

function and energy of an electron in eigenstate n.

The potential V (r) is periodic in space, so solutions to the one-electron

Schrödinger equation 2.4 are also periodic and it was realised by Felix Bloch

that they could be described by modified plane waves (Bloch functions) of
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the form:

Ψk,n(r) = uk,n(r)eik·r (2.5)

where uk,n(r) is a periodic function for the nth electronic state (ordered by

energy) with momentum k. These have the periodicity of the Bravais lattice

with a lattice vectorR such that:

uk,n(r) = uk,n(r +R). (2.6)

Consider now the wavefunction at a position r′ = r +R, and substituting

equation 2.6 into equation 2.5, we see:

Ψk,n(r +R) = uk,n(r +R)eik·(r+R) (2.7)

=⇒ Ψk,n(r +R) = uk,n(r)eik·reik·R (2.8)

=⇒ Ψk,n(r +R) = eik·RΨk,n(r). (2.9)

Therefore Bloch functions translated by a lattice vector are equivalent up

to a phase factor. Similarly, electrons with momentum k and k + G both

satisfy equation 2.5 so the wavevector is not unique, i.e., there are multiple

wavevectors which provide the same eigenenergy, i.e. E(k) = E(k + G).

This then means it is only necessary to consider electrons with a momen-

tum between k = −G/2,+G/2 termed the first Brillouin zone in a reduced

zone scheme. The amount of k-space necessary to calculate the one-electron

eigenstates is dramatically reduced by these approximations, the question

now being how is equation 2.4 solved.

2.1.1 Tight Binding Method

Two of the main approaches for understanding how to calculate and

interpret these solutions are the nearly free electron model and the tight

binding approach. The latter of these two will be discussed in some de-

tail here. The nearly-free electron method gives qualitatively similar results

to the tight binding method by considering the kinetic energy part of the



12 Chapter 2. Scientific Background

0.5

0.4

0.3

0.2

0.1

0.0

Pr
ob
ab
ilit
y
de
ns
ity

2520151050
r (Å)

FIGURE 2.1: Probability densities of the radial part of a hy-
drogen wavefunction [15, 16] for various principle quantum
numbers, n, and orbital angular momentum, l. Wavefunc-

tions with larger n are more spatially extended.

Hamiltonian, and applying a crystal potential as a weak perturbation us-

ing perturbation theory. The tight binding method considers the opposite

scale, where the potential is treated as being strong, with electronic states

mostly localised to individual atoms (i.e. tightly bound). This approach will

be the focus since theoretical results presented in this thesis (provided by

collaborators) derive directly from tight binding models.

When atoms are brought into proximity with each other (e.g. in a lattice),

the states of each atom can lower their total energy by forming bonding or-

bitals when their wavefunctions overlap. Generally, the largest, least bound

orbitals have the greatest overlap with neighbouring atoms (fig. 2.1), and

therefore contribute the most to the bonding of the atoms within the solid

and its electronic properties. The deepest bound core electrons contribute

much less to bonding and remain highly localised to a given atom and con-

sequently have negligible electronic dispersion.

With this in mind, a trial wavefunction to solve equation 2.1 can be writ-

ten as a linear combination of the relevant atomic orbitals (sometimes called
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‘the LCAO method’, which is essentially equivalent to the tight binding

method) that contribute to forming bonding and antibonding orbitals:

|Ψi〉 =
∑
n

ci,n|φn〉 (2.10)

where |Ψi〉 is the ith solution to the Schrödinger equation, expressed as a

sum over all the relevant atomic orbitals, |φn〉, multiplied by a complex co-

efficient, ci,n, which encodes the weight of a given orbital component and

the complex phase. Generally, the more orbitals that are included in the

model, the better the approximation will be. Given the spatially localised

nature of the deep core electrons, it is typically satisfactory to only include

orbitals that lie close to the Fermi level: the valence electron states. With

this, the Schrödinger equation can then be written as:

∑
n,m

c∗i,m(k)ci,n(k)[〈φm|H(k)|φn〉 − Ei(k)〈φm|φn〉] = 0 (2.11)

where 〈φm|H(k)|φn〉 is a matrix element of the Hamiltonian, describing hop-

ping from an orbital m to an orbital n (or in the case that m = n, this is the

onsite orbital energy and crystal field energy). The size of this hopping ef-

fectively relates to the bandwidth of a band, with larger hoppings typically

corresponding to larger bandwidths. The term 〈φm|φn〉 is the overlap inte-

gral between two orbitals m and n, which in the case of orthogonal orbitals

is a Kronecker delta but should in principle be calculated in the case that we

have non-orthogonal orbitals. Atomic orbitals are not necessarily orthog-

onal so there are multiple methods to overcome this, the simplest method

being to neglect the overlap which can anyway provide qualitatively rea-

sonable results.

Another method is choosing an orthogonal basis set of orbitals. A pop-

ular choice of basis is Wannier orbitals, which are employed for our tight

binding results in later chapters. These are an orthonormal set and are
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Fourier transforms of Bloch functions [14]. The relation between the Wan-

nier function an(r −Ri) and the Bloch function Ψnk(r) is given by:

an(r −Ri) = N−1/2
∑
k

e−ik·RiΨnk(r) (2.12)

Ψnk(r) = N−1/2
∑
Ri

eik·Rian(r;Ri) (2.13)

where Ri is a lattice vector, k is the wavevector for the nth state, and N

is the number of unit cells in the crystal [14]. Bloch functions consider the

wavefunction indexed by a momentum k and are periodic in space. They

are spatially extended across the crystal as described in the previous section,

since Bloch functions are equivalent for r′ = r + R, up to a phase factor.

Since Wannier functions are the Fourier transform of Bloch functions, these

are then well localised to a region close to a lattice vector (r−Ri). So-called

maximally-localised Wannier orbitals are then qualitatively very similar to

atomic orbitals (since they have minimal spread over multiple lattice sites /

atoms), which makes them useful for solutions to tight binding models [17].

Finally, solving the secular equation 2.11 at a selection of k-points through-

out the Brillouin zone will approximate to the one-electron band structure.

The solutions provide eigenenergies or band energies, Ei(k), of the i eigen-

vectors or wavefunctions, |Ψi〉. These wavefunctions, |Ψi〉, contain all the

information about the orbital composition of the bands at given k-points

of each band through the magnitude of the complex coefficients. These

wavefunctions can then also be used to project any other important physical

quantities such as the expectation of orbital angular momentum for a given

eigenfunction at a point in k, 〈L〉 = 〈Ψi(k)|L|Ψi(k)〉, or the spin polarisa-

tion, 〈S〉 = 〈Ψi(k)|S|Ψi(k)〉, where L and S are the quantum mechanical

orbital angular momentum operator and spin angular momentum operator,

respectively.

The power of this method is particularly well illustrated by Slater and

Koster, who pioneered treating this as an interpolation method [18]. They

provide a formalism in which the energy of the hopping (or the extent of

the physical overlap) between two orbitals can be determined in a so-called
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FIGURE 2.2: Interaction energies between orbitals on neigh-
bouring atoms in a Slater-Koster, two-centre approximation
with hopping (or Slater-Koster) parameters Vspσ , Vppσ and

Vppπ . Reproduced from [14].

two-center approximation. This decomposes the orbitals along the position

vector connecting them, into combinations of appropriate bond types (e.g.

σ±, π±, δ± for d-orbitals), weighted by the angle between them and their

separation distance. A simple illustration of this is found in Yu and Cardona

[14] (fig. 2.2), with the full table up to d-orbitals published in Slater and

Koster’s 1954 paper [18]. With this simplification, tight binding models can

be constructed and solved.

This method is computationally less expensive than more exact com-

putational methods, and can be easily calculated at arbitrary k-points off

high-symmetry points, while getting the composition of the band, and the

symmetry mostly correct. It can be fit to other methods reasonably easily

by comparing quantities such as band energies and velocities close to high

symmetry points. These models then provide an ideal testbed for deter-

mining the minimal ingredients necessary to produce the required results,

highlighting for example the key interactions.



16 Chapter 2. Scientific Background

2.2 Spin-orbit interactions

Spin-orbit coupling has often historically been neglected from calcula-

tions of band structures since it enters as a relativistic correction to the Schrödinger

equation. As described in the previous chapter, it is now being seen to play

a key role in condensed matter with significant consequences for technolog-

ical and fundamental physics. The majority of findings in this thesis are as

a direct result of strong spin-orbit interactions, which are found to have rich

and unexpected consequences. As a starting point, it will be helpful to con-

sider how the spin-orbit interaction arises in atoms before exploring this in

a lattice and looking into another manifestation of the spin-orbit interaction,

the Rashba effect.

2.2.1 Atomic spin-orbit

So far we have discussed only non-relativistic physics but to include

the spin-orbit interaction we need to consider a relativistic description of

the electrons. These effects can be accounted for by introducing relativistic

corrections to the Schrödinger equation, in order to approximate the Dirac

equation, which treats these relativistic effects correctly. Taking account of

these corrections, for a hydrogen-like atom with a spherical central poten-

tial, the Hamiltonian can be written [19]:

H =

(
p2

2m
+ V︸ ︷︷ ︸

non rel.

− p4

8m3c2︸ ︷︷ ︸
mass corr.

− ~2

4m2c2

dV

∂r

∂

∂r︸ ︷︷ ︸
Darwin

+
1

2m2c2

1

r

dV

dr
L · S︸ ︷︷ ︸

SOC

)
(2.14)

where the first and second terms are simply the non relativistic part, the

third term accounts for a variable mass. The fourth term is called the Darwin

term, which applies only to l = 0 states. In the case of a Coulomb potential

(∼ 1
r ), working out the matrix element by first order perturbation theory

reduces this to an expression which depends solely on the amplitude of the

radial part of the wavefunction evaluated at r = 0, where s-orbitals are

the only orbitals to not have a node [16]. The final term is the spin-orbit
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coupling (SOC) term, where there is a factor of a half included due to the

Thomas correction.

The spin-orbit term is then be written as HSOC = ζL · S, where ζ =

1
2m2c2

1
r
dV
dr . This describes the spin-orbit coupling strength originating from

a particular atomic species, which goes as ζ ∼ Z4 (where Z is the atomic

number): therefore, the spin-orbit coupling strength is generically larger for

heavier elements [16]. This assumes a Coulomb potential U(r) = −Ze2/r

however so in practice the spin-orbit strength is not simply monotonic with

atom size. The spin-orbit term can anyway be straightforwardly incorpo-

rated into an effective Hamiltonian in the following way:

H = H0 +HSOC (2.15)

HSOC =
ζ

2
L · S =

ζ

2
(Lxσx + Lyσy + Lzσz) (2.16)

where σx,y,z are the Pauli spin matrices, σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =(

1 0
0 −1

)
. The HSOC term then becomes:

HSOC =
ζ

2

 Lz Lx − iLy

Lx + iLy Lz

 =
ζ

2

Lz L−

L+ Lz

 (2.17)

where L± = Lx ± iLy and Lz are the orbital angular momentum ladder

operators and z projection respectively. These operate in the following way:

Lz|Y ±ml 〉 = ±ml|Y ±ml 〉 (2.18)

L±|Y ±ml 〉 =
√
l(l + 1)−m(m± 1)|Y ±ml 〉. (2.19)

where |Y ±ml 〉 is the orbital part of the wavefunction written in spherical har-

monics. The angular momentum quantum number l has a range 0 ≤ l ≤ n,

and the magnetic quantum number ml has a range −l ≤ ml ≤ l. The intro-

duction of spin-orbit coupling then doubles the effective Hamiltonian, since

the spin-degeneracy is lifted, such that the original Hamiltonian in equation
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2.15 can be written:

H =

H↑↑ H↑↓

H↓↑ H↓↓

 =

H0 + ζ
2Lz

ζ
2L
−

ζ
2L

+ H0 − ζ
2Lz

 (2.20)

where the Hamiltonian is split into quadrants for all combinations of spin-

up and spin-down. Writing p-orbitals in spherical harmonics as (by way of

example, since there are multiple consistent ways of writing these):

|px〉 = − 1√
2

(
|Y 1

1 〉 − |Y −1
1 〉

)
(2.21)

|py〉 =
i√
2

(
|Y 1

1 〉+ |Y −1
1 〉

)
(2.22)

|pz〉 = |Y 0
1 〉. (2.23)

it is then straightforward to calculate how spin-orbit coupling modifies the

effective Hamiltonian using this prescription. With these definitions, the

matrix elements in equation 2.20 then demonstrate how the spin-orbit inter-

action promotes a mixing of orbital character.

Until now this section has focused solely around bulk electronic struc-

ture and mentioned only a form of spin-orbit interaction derived in analogy

to atomic physics. As briefly introduced in the previous chapter, in real crys-

tals there are additional symmetry considerations that must be accounted

for, as well as the surface itself having significant consequences for the elec-

tronic structure.

2.2.2 Surface states

It is worthwhile to study electronic states confined to surfaces because

real crystals that we measure have a surface. States confined to the surface

can have radically different properties to their bulk counterparts, introduced

briefly in the previous chapter. This section will now briefly discuss key

properties of surface states and provide a description of the well known

Rashba effect, describing the effect of the spin-orbit interaction at crystal

surfaces.
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At the surface of a crystal, the perfect translational symmetry is broken

(in the direction perpendicular to the surface), and the potential must then in

some way go from the lattice potential to the vacuum potential. This means

that now Bloch functions, which are valid solutions to the Schrödinger equa-

tion in the bulk, are no longer valid solutions exactly at the surface due to

the broken symmetry. We can define the axis perpendicular to the surface as

the z axis, labelling regions deep within the solid as z � 0 and the surface

itself as z = 0.

Following Lüth [20], the solutions deep within the solid give the ex-

pected modified plane wave solutions but these must decay exponentially

upon reaching the potential step into the vacuum at the surface, since they

cannot exist outside the solid. The wavefunction has to be continuous at

z = 0. Matching the plane wave onto an exponential decay is achieved by

assuming the plane wave to be a superposition of the incoming Bloch func-

tion and a reflected Bloch function, i.e. having the form:

ψsolid ∼ Aeikzz +Be−ikzz; z < 0 (2.24)

ψvac ∼ Ce−z; z > 0. (2.25)

The matching is achieved by forcing solutions, and their spatial derivative,

evaluated at z = 0 to be equal:

ψsolid|(z=0) = ψvac|(z=0) (2.26)

∂ψsolid

∂z

∣∣∣∣
(z=0)

=
∂ψvac

∂z

∣∣∣∣
(z=0)

. (2.27)

This demonstrates that solutions that exist deep within the bulk, for some

real k that is a valid solution to the Schrödinger equation, extend fully up to

the surface of the crystal (fig. 2.3a). This is then crucial for surface probes

of bulk electronic structure, as will be discussed in the next chapter. It is

worth noting that the peak in the real part of the wavefunction will never be

exactly at z = 0, since the vacuum part of the wavefunction is an exponential

decay. Its derivative therefore never goes to zero, meaning the condition in
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a b

FIGURE 2.3: Real part of the bulk (a) and surface (b) wave-
functions near a crystal surface. Both can be seen to expo-
nentially decay into the vacuum (z > 0), while only the sur-
face state decays into the solid (since it cannot be degenerate

with bulk solutions).

equation 2.27 would never be satisfied.

Additional states are also possible if we now allow for imaginary wave

vectors for the wavefunction in the solid, which can still form valid solutions

to the Schrödinger equation. This imaginary wave vector then produces an

exponential decay into the bulk (from putting an imaginary wavevector into

a plane wave like solution), as well as still being forced to decay into the

vacuum. Having both exponential decays above and below z = 0 implies

that the amplitude of the wavefunction goes to zero far from the surface

both into the solid and the vacuum, i.e. these are localised to the surface

(fig. 2.3b). It is clear then that the values of imaginary wave vector which

give real values of energy (as required), correspond to energies which fall

in the bulk band gap. Or equivalently, given that bulk states are solutions

with real momenta, if these surface states existed at energies equal to bulk

states, they could not have imaginary momenta and would not yield an

exponential decay into bulk: the only place where imaginary momentum

solutions can exist is where there is not already a real momentum solution,

hence surface states must live in bulk band gaps.

This picture of how surface states can arise can be extended to 3D where

surface states must still exist within a bulk band gap. Real crystals can have

complicated band structures in 3D since bulk band energies E can disperse

with in-plane momentum k|| and out-of-plane momentum k⊥ (fig. 2.4a).
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a b Bulk Surface

Bulk continuum Quantum well states

Electron
accumulation

True surface state

Surface resonance

FIGURE 2.4: a) Schematic band structure with solid lines cor-
responding to bulk bands. The grey regions are the bulk
continuum states and white corresponds to a band gap. The
long dashed lines are true surface states living within a pro-
jected band gap, while the short dashed lines are degenerate
with bulk states and so are described as surface resonances.
b) Example band bending potential V (z) for a conduction
band edge EC from an electron accumulation layer given by
n(z). This confines electron states into a ladder of subbands

with energy Ei. a) Reproduced from [20]

Surface states can only have in-plane momentum k|| (dashed lines in fig-

ure 2.4a). True surface states still must exist in the projected bulk band gap,

where the bulk band gap exists for all k⊥. Some surface states can exist

for E(k||) where a bulk state exists for a particular k⊥, i.e. they are degen-

erate with the projected bulk continuum states. These are called surface

resonances. They can mix with the bulk states and typically extend slightly

deeper into the bulk than their true surface state counterparts.

Two main classifications of true surface states can be distinguished: Shock-

ley surface states and Tamm states [21]. Shockley surface states typically

arise from the boundary conditions being different at the surface and live in

the band gap with a complex wave vector in the manner described above.

The complex wavevector prevents them from being solutions in the bulk

solid and they are hence localised to the surface. Tamm states can be thought

of in a tight binding sense as arising from a change in the potential arising

from the different atomic environment. This change in the potential amends

the onsite term in the Hamiltonian and has the consequence that the bulk
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states are ‘split-off’ from the states of the bulk solid. The fact that these only

arise as a result of the different potential environment for the atoms at the

surface lead to the surface localisation of these states.

Finally, as well as the potential barrier of the vacuum creating bound

states in the bulk, if there is generically a change in the potential near to

the surface or at an interface, there is the possibility of confining additional

states (fig. 2.4b). This can happen in charge accumulation layers in semi-

conductors, where electronic charge is distributed in a way that screens the

potential of the lattice near to the surface. A reduction from the bulk poten-

tial can stem for example from electron accumulation (if you have an n-type

bulk), screening a positive ionic charge. An increase in the surface potential

can arise from hole-accumulation (if you have a p-type bulk), screening neg-

ative ionic charge. An inversion layer is similar but where the surface and

bulk carriers are opposite. This localised change in potential can confine

states between these two potential barriers, acting as a quantum well-like

potential (fig. 2.4b). The solutions are then a ladder of quantised states (fig.

2.4b). These confined states will retain information of the bulk Bloch char-

acter.

Breaking inversion symmetry at the surface of course has greater signifi-

cance than the property of hosting surface states. In the previous chapter in-

version symmetry breaking was stated as being a requisite for spin-splitting

through the spin-orbit interaction. The following sections will go into more

detail how this arises.

2.2.3 Time reversal and inversion symmetry

Until this section, the band structure in this chapter has been assumed

to be spin-degenerate, i.e. there are two spins for every state E(k). This is

not an unreasonable assumption as this is a direct consequence of the dual

constraints of time reversal symmetry and inversion symmetry, which can

be shown in the following way.

The time reversal operator, T̂ , operates on a time dependent function
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such that T̂ f(t) = ±f(−t). The time reversal operator acting on time rever-

sal symmetric functions has an even (or positive) eigenvalue. Similarly, the

parity (inversion) operator, P̂ , operates on a function such that P̂ f(r(x, y, z)) =

±f(r(−x,−y,−z)) = ±f(−r). Inversion symmetric functions have an even

parity eigenvalue. Provided these symmetries are not broken, then in en-

ergy and momentum space this means the following conditions must be

satisfied for a state of E(k):

T̂E(k, σ) = E(−k,−σ) =⇒ E(k, σ) = E(−k,−σ) (2.28)

P̂E(k, σ) = E(−k, σ) =⇒ E(k, σ) = E(−k, σ) (2.29)

(2.30)

where σ = {↑, ↓}. It is straightforward to see why momentum and spin have

odd time reversal eigenvalues. Momentum has an odd parity eigenvalue as

expected, while the spin has an even parity eigenvalue. This can be under-

stood if you consider spin as having dimensions of angular momentum: a

cross product of position and momentum. Both these quantities have odd

parity eigenvalues, yielding a net even parity eigenvalue. The combina-

tion of these dual constraints implies a total double degeneracy of the Bloch

states, termed Kramer’s degeneracy.

2.2.4 The Rashba effect

The total spin degeneracy in the system can be lifted by breaking either

of these symmetries. Magnetism breaks time reversal symmetry by shifting

in energy the density of states of spin-up vs spin-down states depending on

whether these are aligned or anti-aligned with an applied field in a Stoner-

like model. With the energy of spin-up states being different to the energy

of the spin-down states, it follows that this breaks time reversal symmetry

(eq. 2.28), and bands acquire spin polarisation (fig. 2.5b). However, in the

presence of broken inversion symmetry, even if time reversal symmetry is

upheld, the degeneracy can be lifted by the Rashba effect.
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a b c

Time reversal symmetry

Inversion symmetry

Time reversal symmetry

Inversion symmetry

Time reversal symmetry

Inversion symmetry

FIGURE 2.5: a) A typical two-dimensional electron gas
(2DEG) dispersion in which E ∝ k2. This has preserved
time reversal symmetry and inversion symmetry. b) A 2DEG
in an applied magnetic field (in the z direction) has broken
time reversal symmetry but preserved inversion symmetry.
c) A Rashba-split 2DEG (with spins in the kx-ky plane). In-
version symmetry is broken but time reversal symmetry is

preserved.

The mechanism for how Rashba spin-splitting arises can be motivated

by considering a two-dimensional electron gas (2DEG) at a material surface,

formed from a gradient in the potential at the surface in the z direction (e.g.

fig. 2.4b). In the case of a 2DEG, the asymmetric potential confining the elec-

trons breaks inversion symmetry in the z direction (although, even without

this asymmetric confining potential the interface between bulk crystal and

vacuum, i.e. the surface, breaks inversion symmetry). SinceE = −1
e∇V (r),

the gradient in the potential at the surface creates an electric field in the z

direction. In a semi-classical picture, an electron moving through an elec-

tric field E with velocity v will experience this in its rest frame as an effec-

tive magnetic field B = −1
cv × E [22]. This can couple to the spin states

of the electrons through their intrinsic magnetic moment, lifting the spin-

degeneracy. This naturally must have a dependence on the electron mo-

mentum through their velocity, the dependence is most easily shown from

the spin-orbit Hamiltonian as a starting point.
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The general form (not simply for a spherical potential) for the spin-orbit

term in the Hamiltonian of equation 2.14 can be written as [23]:

HSOC =
~

4m2c2
∇V × p · σ. (2.31)

where m and p are the electron mass and momentum respectively, c is the

speed of light, and σ are the Pauli matrices. Bychkov and Rashba in 1984

showed that for an electric field in the ẑ direction, E = Ezẑ, from the po-

tential change normal to the surface, the Hamiltonian becomes [2]:

HR = αR (ẑ × p) · σ. (2.32)

where the constants and electric field strength are contained within the Rashba

parameter, αR = e~2
4m2c2

Ez . This can be expanded to give an equivalent form:

HR = αR (kxσy − kyσx) (2.33)

where ki, and σi are components of the momentum and spin, respectively.

From this we can understand that the spin-splitting is a function of momen-

tum, and that an in-plane component of the momentum is locked to the

perpendicular direction of the vectorial spin, termed spin-momentum lock-

ing. Solving the Schrödinger equation for a free particle with this additional

term in the Hamiltonian, the following dispersion relation is found [2]:

E(±)(k) =
~2k2

2m
± αRk (2.34)

where E(±) refers to the two eigenstates given by:

ψ+ = eikr(| ↑〉+ ieiθk | ↓〉) (2.35)

ψ− = eikr(ie−iθk | ↑〉+ | ↓〉) (2.36)

which are superpositions of spin-up and spin-down eigenstates. This re-

flects the fact that with spin-orbit interactions, spin is no longer a ‘good’

quantum number. The phase factor includes an angle θk, that k makes with
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, , are TRIM , are TRIM , are not TRIM

a b c d

FIGURE 2.6: High symmetry points that can be translated
between by both a reciprocal lattice vector and time reversal
are necessarily doubly degenerate shown in these examples
by following the arrows. a) The Γ, X and b) M points in the
square Brillouin zone are all TRIM. c) The Γ and M points in
a hexagonal Brillouin zone are TRIM. d) The K and K’ points
are not TRIM. Green arrows denote reciprocal lattice vectors
G. The orange arrows denote the application of time rever-
sal symmetry (eq. 2.28). High symmetry points are shown

by black dots.

the x axis [24].

This derivation reveals several important aspects of Rashba spin split-

ting. The dispersion after Rashba splitting is then two free-electron like

parabolae, with a splitting in energy that increases linearly in k. They cross

at exactly k = 0 (the Γ point) since this is required by time reversal symme-

try. This can be seen from inputting k = 0 into the equation for time reversal

symmetry (eq. 2.28).

This can be extended to a generic high symmetry point Λ at a momentum

kΛ. Through application of time reversal symmetry (yellow arrows in fig.

2.6), we have E(kΛ, ↑) = E(−kΛ, ↓). In addition, if the states at kΛ and −kΛ

are separated in momentum by a reciprocal lattice vector G (green arrows

in fig. 2.6), then −kΛ +G = kΛ, which implies:

E(−kΛ +G, ↑) = E(kΛ, ↑). (2.37)

In this special case, with these two conditions (eq. 2.28 and eq. 2.37), the

generic high symmetry point Λ must be doubly degenerate. This is shown

by example in equation 2.38 and figure 2.6. A state can be translated by G

onto a state with opposite momentum that is forced by time reversal to have
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a state of opposite spin:

E(kΛ, ↑) = E(−kΛ, ↓) = E(−kΛ +G, ↓) = E(kΛ, ↓) = E(kΛ, ↑) (2.38)

This follows directly from Kramers theorem discussed earlier. These points

at kΛ = nG/2 are called time reversal invariant momenta (TRIM).

The second aspect that can be revealed from the Rashba Hamiltonian

comes from considering the spin-polarisation. To first order, there is no σz

component of spin (eq. 2.33), i.e. the spin is fully in the kx-ky plane. The

model discussed is for a 2DEG and besides the broken inversion symmetry,

the lattice symmetry itself has not be considered. Winkler gives a detailed

description of the higher order effects of lattice symmetry in general on the

spin-orbit Hamiltonian [23]. For now it will suffice to consider this 2DEG

model.

Additionally, the spin and momentum components of the Rashba Hamil-

tonian (eq. 2.33) are perpendicular to each other, i.e. there is a perpendicular

spin-momentum locking (e.g. fig. 2.5c). If this is evaluated around the kx-ky

plane it can be shown that the spin circulates around the constant energy

contours (fig. 2.5). Provided upheld TRS and broken inversion symme-

try, this results in the well known counter-propagating chiral spin texture,

shown in figure 2.5c.

This effect is well exemplified with its discovery by LaShell et al. (1996)

on Au(111) [25], using angle-resolved photoemission spectroscopy (ARPES).

At the surface of Au(111), there is a now well-known Shockley surface state

living in the band gap, which is centred around the Γ̄ point (fig. 2.7). LaShell

and colleagues measured energy distribution curves (EDCs: the intensity vs

energy at a single point in k = (kx, ky, kz)) for this state, at a series of differ-

ent angles, corresponding to different in-plane momenta k. In the EDC at

k|| = 0, they observe two peaks, whereas when they measure at momenta

k|| 6= 0, they measure that these peaks split in energy giving four peaks

(fig. 2.7a). The peaks at higher binding energy are an artefact of the light

source they use, which is an ArI doublet. The splitting of the peaks in the
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a b c

FIGURE 2.7: First measurements of the Au(111) surface state
using ARPES [25] and spin-ARPES [26]. a,b) Two NFE-
like parabolic bands ascribed to spin-splitting. c) Spin-
resolved energy distribution curves as a function emission
angle showing opposite spin-polarisation of the these bands

consistent with a Rashba component of the spin.

EDCs away from the Γ̄ point in momentum they attribute to the spin-orbit

interaction. The fits to the peak positions gives two nearly free electron-like

parabolae that are shifted in momentum, so this looks qualitatively like a

Rashba splitting. However the size of the splitting that would arise from

the surface potential step in the original Rashba model would typically give

splittings in energy at the Fermi level of ∆E = 10−3 meV. They measure a

splitting of ∆E = 110 meV, orders of magnitude larger, so it cannot be from

the electrostatic surface potential alone. They recognise that the proximity

of the wavefunction to the asymmetric potential of the ion cores is impor-

tant. The splitting is then additionally dependent on the atomic spin-orbit

strength from the gradient in the potential near the nuclei.

This is confirmed by a tight binding model by Petersen and Hedergård

(2000) [24]. They represent the asymmetry of the surface potential through

allowing mixing of pz and px,y orbitals. They include intra-atomic spin-orbit

coupling as described in equation 2.20 and show that without including the

px,y orbitals, there is no effect from spin-orbit coupling. This coupling to

the px,y orbitals near the surface makes the wavefunction asymmetric and

inherits the full atomic spin-orbit strength. In chapter 4 we will expand on

the significance of this. From this procedure, they gain more quantitative
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agreement with measurements, in addition to what can be qualitatively un-

derstood from a typical Rashba model. The size of the splitting in Rashba

split surface states has been an active area of research in recent years which

will be discussed in a later chapter in this thesis.

Further, this Au(111) surface state was found to have a spin texture char-

acteristic of Rashba splitting by Hoesch et al. (2004), as measured by spin-

and angle-resolved photoemission (spin-ARPES) [26]. Measuring a similar

set of characteristic EDCs as with LaShell (1996), they were able to measure

directly the components of spin at different in-plane momenta and show

that this had a perpendicular spin-momentum locking characteristic of the

in-plane chiral spin texture arising from Rashba spin-splitting (fig. 2.7c).

These techniques ARPES and spin-ARPES are clearly invaluable for probing

the electronic structure of a material. These are additionally the techniques

that are employed heavily throughout this thesis. In order to interpret our

results it is therefore essential to have an introduction into how these tech-

niques work and how they can be implemented.
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Chapter 3

Methods

3.1 Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) and spin-ARPES

are techniques that have been employed throughout this thesis. This chapter

will walk though the key theory which allows interpretation of photoemis-

sion data, and consider typical practical set-ups of a photoemission experi-

ment. The theoretical section will follow mainly Hüfner [21] and Damascelli

(2004) [27].

3.1.1 Photoemission background

The technique relied on heavily for this thesis is angle-resolved photoe-

mission spectroscopy (ARPES), which can be thought of as imaging directly

the occupied part of the electronic band structure plus interactions. It has

its roots in the photoelectric effect, discovered by Hertz in 1887 [28] and

later described by Einstein in 1905 [29], for which he won his Nobel Prize.

This is where light is incident on a sample, which excites an electron within

the solid. Provided the photoexcited electron has enough energy to over-

come the potential barrier of the surface, the photoelectron can escape the

sample. Information about the binding energy and momentum of the elec-

trons within the solid can be obtained from measuring the kinetic energy

and emission angle of the outgoing photoelectrons, effectively building up

a picture of the band structure of a material. The details of this process are

quite involved and some simplifying assumptions will have to be made in

order to understand the results.
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There are two main frameworks for describing photoemission: the three-

step model and the one-step model (fig. 3.1). The three-step model gives

a qualitatively simpler picture to interpret, which still provides reasonable

results, while the one-step model provides the basis of cutting edge photoe-

mission calculations. The three-step model breaks the photoemission pro-

cess into separate processes summarised as:

1. optical excitation of an electron into a bulk final state

2. propagation within the bulk state to the surface

3. refraction at the surface and escape into the vacuum

The one-step model treats photoexcitation and emission of an electron as

a single process in which the photoelectron is excited directly into a damped

inverse LEED (low-energy electron diffraction) state near the surface, which

is wave matched onto a wavefunction outside the crystal (fig. 3.1). The de-

tails of this treatment are beyond the scope of this thesis but an introduction

can be found in Hüfner [21]. Instead, interpreting photoemission experi-

ments from within the framework of the three-step model will be discussed

in some detail.

3.1.2 Three-Step model

For the first step within the three step model, the transition rate from an

initial state Ψi into a final state wavefunction Ψf can be described by Fermi’s

golden rule [27]:

wfi =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|2δ(ENf − ENi − hv) (3.1)

whereENi andENf are the initial and final state energy of theN -particle sys-

tem respectively, which must be conserved upon excitation with a photon

of energy hv. The N -particle system consists of the (N − 1)-particle sys-

tem left behind after the emission of a particle with kinetic energy Ekin i.e.

(ENf = EN−1
f + Ekin). Similarly, the initial system energy can be separated
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FIGURE 3.1: Schematic of the three-step model vs the one-
step model. The three-step model involves 1) optical excita-
tion, 2) travel to the surface in a bulk state 3) escape into the
vacuum. The one-step model excites directly into a damped
final state near the surface, which is wave matched onto a

state in the vacuum. Reproduced from [21].

into the (N − 1)-particle energy and the binding energy of an electron, EB

i.e. (ENi = EN−1
i − EB).

The electromagnetic field of the light implies that in the Hamiltonian

p → p − eA, where p = i~∇ is the momentum operator, and A is the

electromagnetic vector potential. Therefore, the kinetic energy part of the

interaction Hamiltonian becomes (neglecting the higher orderA ·A term):

Hint =
e

2mc
(p ·A+A · p). (3.2)

The commutation relation [p,A] = −i~(∇ ·A) implies then:

p ·A+A · p = 2A · p− i~(∇ ·A). (3.3)

The dipole approximation is then invoked, since the wavelength of light is

much greater than the inter-atomic distances soA is assumed to be constant
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(and so the divergence of A is assumed to be zero). The interaction hamil-

tonian with the photon is then [21]:

Hint =
e

mc
A · p. (3.4)

which is the form that is typically considered in the photoemission process.

It is also important to point out that vertical transitions (no in-plane momen-

tum transfer) from an initial to final state are not possible for a free electron.

Therefore the lattice potential is a strict requirement: the crystal momentum

is essential for excitation into a final state in equation 3.1.

Factoring out the single electron orbital, the many-particle wavefunc-

tions in the matrix element in equation 3.1 can be written (in the Hartree-

Fock approximation) as an antisymmetric product of the photoelectron and

the (N − 1)-electron system:

ΨN
i = Aφki ΨN−1

i (3.5)

whereA is the antisymmetry operator, and φki is the initial state one-electron

orbital from which the electron is excited (at some k). Assuming the sudden

approximation (i.e. the instantaneous creation of a photohole, with no time

for the system to relax), the final N -electron ground state of the whole sys-

tem can be written similarly as:

ΨN
f = AφkfΨN−1

f (3.6)

The transition matrix element from Fermi’s Golden Rule (eq. 3.1) can then

be factored into:

〈ΨN
f |Hint|ΨN

i 〉 = 〈φkf |A · p|φki 〉 〈ΨN−1
s |ΨN−1

i 〉 (3.7)

where the first term is the one-electron transition matrix element Mf,i. The

second term cs = 〈ΨN−1
s |ΨN−1

i 〉 gives the amplitude that, after an electron

is removed from the initial state |φki 〉 of the N -electron ground state, the
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a b

FIGURE 3.2: a) Non-interacting system with the spectrum
for a band dispersing across the Fermi level. b) The same
band in an interacting system with satellites corresponding
to additional final states. Ground state occupation function
n(k) shown at zero temperature for both non-interacting (a)

and interacting systems (b). Reproduced from [27].

(N − 1)-electron system is left in a final state s. The photoemission intensity

at a momentum k and energy Ekin is then proportional to a sum over all

possible final states:

I(k, Ekin) ∼
∑
f,i

|Mf,i|2
∑
s

|cs|2 δ(Ekin + EN−1
s − ENi − hν) (3.8)

where the delta function conserves total energy. The second sum is called

the spectral function A(k, E) =
∑

s |cs|2, which contains all the information

about many-body effects and interactions within the photoexcitation pro-

cess in this first step.

In the non-interacting case (fig. 3.2a), there is a peak in the photoemis-

sion spectrum for a transition into a final state with a non-zero overlap be-

tween ΨN−1
f and ΨN−1

i . In the case of a weakly interacting system, the spec-

tral function looks similar to the non-interacting case. A more strongly inter-

acting system will have multiple final states for which there is some overlap

with the same initial state. This reflects the fact that removing an electron

from a system in which the interactions between electrons is strong, will re-

sult in a greater change to the local potential of the system, and correspond-

ingly the main photoemission peak will also have satellite peaks for these

additional final states [27]. How the spectral function affects the photoemis-

sion spectrum in the presence of interactions is discussed in the following
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way.

Since the spectral function is dealing with the response of the system to

the photoexcitation process, it is convenient to relate this to the one-electron

Green’s function G(k, E). The relation between the spectral function and

the one-electron Green’s function is given by:

A(k, E) =
1

π
|ImG(k, E)| (3.9)

For a non-interacting system, the necessary Green’s function is written as

[21]:

G0(k, E) =
1

E − E0(k)− iδ
(3.10)

where δ is an infinitesimally small number and E0(k) = ~2k2/(2m) is the

energy of a free electron. Therefore the spectral function in the absence of

interactions, corresponds to a delta function at an energy defined by the

Hartree-Fock orbital energy, or Koopmans’ binding energy (e.g. fig. 3.2a).

For an interacting system (in reality this is what is measured), the change

in energy and lifetime through interactions is included in the Green’s func-

tion as a complex self-energy, Σ(k, E) = ReΣ + iImΣ, giving:

G(k, E) =
1

E − E0(k)− Σ(k, E)
(3.11)

therefore yielding the spectral function:

A(k, E) =
1

π

ImΣ

(E − E0(k)−ReΣ)2 + (ImΣ)2)
. (3.12)

In the presence of interactions that result in a self energy contribution (e.g.

electron-electron, electron-impurity, electron-boson), a quasi-particle picture

is appropriate, describing the particles as being dressed by these interac-

tions. The energy of the quasiparticles is renormalised from the bare elec-

tron energy, and there is additional broadening from their finite lifetime

away from the Fermi energy. In a weak limit of interactions such that there

is little incoherent spectral weight expected, from equation 3.12 it is clear

that the spectral function contribution to the photoemission intensity will be
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FIGURE 3.3: Universal curve for the inelastic mean free path
(IMFP) of electrons in various solids. The IMFP is shown to
depend solely on the kinetic energy of the electrons. Repro-

duced from [30].

Lorentzian. The width and position are then determined by the free-electron

energy, and the complex self energy. To include that ARPES experiments

probe only occupied states, the spectral function must also be multiplied

with the Fermi function:

f(E) =
1

e(E−µ)/kbT + 1
(3.13)

where µ is the chemical potential of the system, kB is the Boltzmann con-

stant, and T is the system temperature. Both the Fermi function and spectral

function must then additionally be convolved with a Gaussian to model the

resolution of the experimental set-up including the detector.

In the second step within the three step model, after excitation into the

bulk Bloch final state, the electron propagates to the surface of the crystal.

Electrons can lose energy through inelastic scattering processes, which pro-

vides a background in the spectra that can be subtracted. The probability

of an electron escaping the sample reduces exponentially into the solid at a
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length scale of the inelastic mean free path, λ. This can be given by a Beer-

Lambert law for photoemission as [30]:

Id = I0e
(−d/λ) (3.14)

where Id is the intensity of electrons from an escape depth d, and I0 is the

intensity corresponding to electrons escaping from the sample surface. For

a longer inelastic mean free path, there is a greater probability of electrons

reaching the surface and so the sampling depth is greater. The mean free

path of the electrons depends on their kinetic energy and follows the well-

known ‘Universal curve’ (fig. 3.3). At low energies (below the minimum

in the curve), the IMFP goes as E2. This can be understood as greater en-

ergy allows for scattering from filled states at deeper binding energies and

scattering into higher energy unfilled states. Therefore the scattering proba-

bility will increase, since increasing the kinetic energy of the electrons makes

more states available for scattering (meaning the IMFP will shorten). This

is the case at low energies where there is a higher density of states from the

valence electrons. Once the kinetic energy surpasses the binding energy of

the valence electrons, there is a greater energy separation between states.

For energies above the IMFP curve minimum, this can be understood sim-

ply as a greater kinetic energy electron can travel further without scattering.

The curve minimum is in the vacuum ultra violet (VUV) region of photon

energies at hv ∼ 30 eV, which yields a mean free path of λ ∼ 5 Å. This is

what makes photoemission such a surface sensitive technique. The univer-

sal curve is intended as an approximate guide for giving mean free paths in

the correct range or order of magnitude (which is sufficient for the purposes

of this thesis). It is clear from the figure (fig. 3.3) that there is a large degree

of variation dependent on several material specific parameters (making it

not so universal after all). A more sophisticated method for approximat-

ing the mean free path as a function of kinetic energy for specific electrons

in specific materials (including e.g. free electron plasma energy, atomic va-

lency, atomic density) can be found in Hüfner [21], referring to the TPP-2
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FIGURE 3.4: Energies involved in the photoemission pro-
cess. The density of states produced (right) when initial
states within a sample (left) are excited by a photon with

enough energy. Reproduced from [21].

method.

In the third step, the electron is refracted at the surface and escapes into

the vacuum provided it is excited with enough energy. In a hemispheri-

cal analyser (exclusively used in the photoemission measurements under-

pinning this thesis), the kinetic energy and surface emission angle are the

quantities measured which should be converted into binding energy and

momentum. In an intuitive description, the emission angles can be deter-

mined by use of electrostatic lenses to guide the path of the electrons into

the analyser, after which the kinetic energy can be determined by the path

of the electrons through the oppositely charged hemispheres of the analyser

(fig. 3.5). The practicalities will be described further in a later section.

Conservation of energy dictates that the binding energy within the solid

is given by:

EB = hv − ΦA − EK (3.15)

whereEK is the measured kinetic energy, and ΦA is the work function of the
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analyser (fig. 3.4). The kinetic energy measured with respect to the vacuum

level in the analyser is the important quantity here since the analyser and

sample have the same ground [31]. From this equation the binding energy

of the electron within the solid can be determined.

The momentum of the initial state within the solid can be determined

through momentum conservation at the surface using its measured emis-

sion angle and kinetic energy. The momentum of the photon is typically not

considered at the energies used in VUV-ARPES experiments (where for ex-

ample at hv = 20 eV ∼ p = 0.01 ~Å−1, somewhat smaller even than typical

linewidths of sharp features). The matching conditions for the wavefunc-

tion at the surface, combined with the upheld x-y translational symmetry

requires that the in-plane momentum is conserved, giving:

k|| =
1

~
√

2mEK sin θ (3.16)

where θ is the emission angle of the electron relative to the sample sur-

face (fig. 3.5). Note that there is no reciprocal lattice vector term so this

momentum is defined in the extended zone scheme, allowing ARPES mea-

surements to probe neighbouring Brillouin zones outside the first zone, by

probing photoelectrons with increasing emission angles. It is worth noting

again that the lack of momentum imparted by the photon means electronic

transitions can be considered as vertical so this has to be considered in a

reduced zone scheme (or equivalently, that the crystal imparts the required

momentum, as mentioned previously [27]).

This defines the in-plane momentum well, however the out-of-plane mo-

mentum k⊥ or kz is not a good quantum number due to the lack of trans-

lational symmetry in this direction. Additional considerations are required.

A widely used model which gives reasonable results is the free-electron fi-

nal state model, in which k⊥ can be determined by assuming the bulk Bloch

final states to be nearly-free-electron-like, giving:

Ef (k) =
~2(k2

|| + k2
⊥)

2m
− |E0| (3.17)
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FIGURE 3.5: A schematic of a typical ARPES experiment.
Light is incident on a sample emitting photoelectrons at var-
ious angles and energies. The photoelectron emission an-
gle is accounted for in the transfer lens section and its path
through the analyser, with the energy being determined in
the hemisphere. A 2D spectrum can be recorded using a

multichannel plate, a phosphor screen and a camera.

where E0 is the binding energy of the bottom of the valence bands [21]. This

then gives a form of the perpendicular momentum as:

kz =
1

~
√

2m(EK cos2 θ + V0) (3.18)

where V0 = |E0|+ ΦA is termed the inner potential. This can be understood

as the bottom of the valence bands referenced to the vacuum level, and in

practice is effectively a fitting parameter.

It is clear from this equation that kz depends on the photon energy through

the kinetic energy, leading to a standard method for determining the out-of-

plane dispersion by varying systematically the photon energy. Until V0 is

determined, the absolute value of kz will be somewhat arbitrary. The inner

potential can be obtained in practice through attempting to match the pe-

riodicity of spectral features in dispersions along kz to the known Brillouin

zone spacing in this direction and varying V0 in the processed data until

there is good agreement. A more accurate method would additionally use
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a b

FIGURE 3.6: Example of kz broadening for 2D and 3D states.
Taking an example of hv = 30 eV, this gives λ = 5 Å giving
∆kz = 0.2 Å−1. For an example c = 10 Å, this gives a Bril-
louin zone size of approximately kz = ±0.314 Å−1, so ∆kz
is approximately the size of the green shaded region. a) A
3D state dispersing strongly inE(kz), with lifetime broaden-
ing Γi. Finite kz integration of ∆kz , results in a large energy
broadening ∆E dominated by kz broadening. b) A quasi-2D
state with little kz dispersion (and the same Γi as in (a)). The

resulting broadening ∆E is more lifetime dominated.

band structure calculations and V0 varied until these agree well.

The free-electron final state model works well where the initial states

are nearly-free-electron-like. It additionally works well at higher energies,

where the crystal potential becomes less significant, and the final states be-

come so close in energy that they form a continuum [27]. The free-electron

final state model can even generally give reasonable results at lower photon

energies.

However, at lower photon energies, kz poses other experimental issues.

Due to the finite mean free path of the electrons, the final state is damped

into the solid over a distance λ. This leads to a finite probing depth. The fi-

nite probing depth along the z axis, where translational symmetry is broken,

results in a finite width in momentum space, ∆kz = λ−1. This finite width in

kz is then large for small sampling depths, given by short λ. The integration

width in kz can be narrowed by probing more of the Bloch functions in the z

direction. This is never zero however from the finite probing depth, so there

will always be an intrinsic width in kz which becomes important for states

which disperse strongly in the kz direction (fig. 3.6).

For states that disperse greatly in kz (3D states), a large ∆kz results in

a large energy broadening ∆E, which usually dominates the total energy
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broadening (fig. 3.6a). This is termed kz broadening. Conversely, for states

which do not disperse greatly in kz (e.g. surface states, quasi-2D states),

kz broadening is equivalently smaller, meaning the total energy broaden-

ing will likely be more dominated by other effects such as intrinsic lifetime

broadening (fig. 3.6b). At lower photon energies, with small mean free

paths, kz broadening is large, so 3D states appear within a measured spec-

trum as diffuse spectral weight. Conversely, if a spectral feature appears

sharp, its electronic dimensionality is likely more quasi-2D.

3.1.3 Matrix elements and symmetry

An important contribution to the photoemission intensity (eq. 3.7 and

eq. 3.8) is the one-electron transition matrix element Mf,i. After factoring

out the (N−1)-electron system, the matrix element term has three parts: the

one-electron final state wavefunction; the interaction Hamiltonian, which

for photoemission is the dipole operator; and the one-electron wavefunction

of the initial state, overall giving:

Mf,i = 〈φkf |A · p|φki 〉 (3.19)

Since this term is an integral of the two wavefunctions over all space, if the

integrand is an odd function (or has an odd parity eigenvalue given the

definition in the previous chapter), the integral will be zero. The matrix ele-

ment will therefore vanish, and hence too the photoemission intensity. This

provides a powerful tool for selectively probing given initial states by mea-

suring in a geometry which necessarily greatly reduces the intensity from

initial states with a vanishing matrix element.

To illustrate this, consider the following highly idealised example (de-

picted in fig. 3.7). Consider photoemission from p-orbitals by linearly po-

larised light. The propagation vector and polarisation vector of the light are

governed by the A · p term. In the geometry in this idealised example (fig.

3.7), light is incident exactly along the x-z direction, which is along the mir-

ror plane. The polarisation vector for s-polarised light is defined as having
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FIGURE 3.7: Simplified geometry of light polarisation and
initial state orbitals to explain matrix element effects. De-
pending on the parity of the light polarisation and initial
state orbital under reflection through the scattering plane
(the mirror plane shown in the figure), the matrix element

may integrate to zero.

its polarisation vector parallel to the samples surface, whereas p-polarised

light is defined as having a polarisation vector perpendicular to the sample

surface. An important mirror plane, the scattering plane, is defined such

that p-polarised light is even under parity transformation with respect to it,

and s-polarised light has an odd-parity eigenvalue.

The final state is assumed to be that of a free-electron, as previously dis-

cussed. We can further simplify this example by considering photoelectrons

travelling along the mirror plane direction to an analyser which is itself in

the mirror plane. Final states which have an odd parity eigenvalue will have

a node in their wavefunction at zero and so the amplitude of the wavefunc-

tion at the detector will also be zero. This means that the final states must

be even parity. In real experiments however this idealised situation is never

practically realised but through our work on BiTeI, it will become clear that

this assumption about the final state is still practically useful in many cases.

The parity of the matrix element as a whole must be even since an odd in-

tegrand would integrate to exactly zero. Given the approximation of an
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even parity final state, this imposes that the parity of the dipole operator

(governed by the light polarisation vector) and the initial states must be the

same (both even (+), or both odd (-), under parity inversion through the

mirror plane) summarised as:

〈φkf |A · p|φki 〉 =


〈+|+ |+〉 6= 0 for p− pol

〈+| − |−〉 6= 0 for s− pol

where all other combinations integrate to zero. From this, p-polarised light

will excite from even parity initial state orbitals, whereas s-polarised light

will excite from odd parity initial state orbitals, with a non-vanishing one-

electron transition matrix element.

Considering the p-orbitals (fig. 3.7), px and pz orbitals are mirror sym-

metric in the mirror plane, lying along the x and z axes. These therefore

have even parity eigenvalues and are excited in this situation solely by p-

polarised light. On the other hand, py orbitals have a contribution from

the phase of the wavefunction which is positive on one side of the mirror

plane, and negative on the other. Taking this into account, py orbitals have

odd parity eigenvalue and so are excited solely by s-polarised light, in this

example.

However in reality, beyond the so far idealised example considered, these

strict conditions are more relaxed. For example the propagation vector of

the light is at an angle to the mirror plane, which means the light polarisa-

tion vector may not be purely p-polarised or purely s-polarised. This means

the one-electron transition matrix element and therefore the photoemission

intensity will not be strictly vanishing. Light which is p- or s-polarised

will therefore only predominantly excite from the symmetry expected ini-

tial state orbitals, with a non-vanishing matrix element for the other orbitals.

This condition can also be relaxed by the analyser being at an angle to the

mirror plane / sample surface and the final state therefore no-longer being
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strictly required to be even parity. Additionally, real orbitals could be mod-

ified from the hydrogen-like simplified cases through bonding / hybridi-

sation, which then makes the symmetry argument harder to make. In all

these cases, instead of leading to a strictly vanishing matrix element, it will

instead lead to a quantifiable reduction in the photoemission intensity. De-

spite these convoluting factors, this still provides a means to study the initial

state orbital composition through polarisation-dependent photoemission.

3.2 Spin-ARPES

As well as using light polarisation to selectively probe the initial state

orbital composition, there are techniques available which allow probing not

just of the initial state orbital but also the spin-degree of freedom. Spin mea-

surement and control is of high interest in an age where the effect of spin-

orbit interactions are being revisited and potential electronic devices taking

advantage of the spin-degree of freedom are being conceived and even lab-

oratory tested [32].

In a spin-ARPES experiment, after taking their path through the trans-

fer lens section and analyser, a beam of electrons of known emission an-

gle and energy are guided through a hole at the base of the analyser (fig.

3.8). The dimensions of the hole and the measurement settings used for the

analyser then determine the angular and kinetic energy resolution. At this

point, there are two main techniques for asymmetrically scattering spin-up

and spin-down electrons to obtain spin-resolution: Mott scattering and very

low-electron energy diffraction (V-LEED). The majority of the spin-ARPES

results presented in this thesis were measured at the i3 beamline of the

MAX III synchrotron in Sweden [33], with a Mott scattering set up. Ad-

ditional measurements were performed at the APE beamline of the Elettra

synchrotron, in Italy [34], with a V-LEED set up.

At i3 (Mott detector), the electrons are accelerated to 25 keV in the spin

transfer lens section, and scattered off a thorium foil target. The high ki-

netic energies of the electrons mean relativistic effects are more significant
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FIGURE 3.8: A schematic of typical spin-ARPES set-ups. a)
Mott scattering set-up: experiment is identical to ARPES up
to the MCP, where a selection of photoelectrons with known
emission angle and kinetic energy are taken into the spin
transfer lens. The incoming beam is scattered of a heavy
metal target and the counts on symmetric pairs of channel-
trons (A,B) are compared to obtain the scattered beam asym-
metry. b) V-LEED set-up: electrons are scattered off a ferro-
magnetic target crystal. The target crystal has two 90o mag-
netisation axes allowing for perpendicular components of
spin-polarisation to be measured. The polarisation is mea-
sured by switching the magnetisation polarity, necessitating

only a single detector.

(importantly, the spin-orbit interaction). The electrostatic field of the nu-

clei of the heavy metal target is experienced by the incoming electrons in

their rest frame as a magnetic field. The effective magnetic field can then

couple to the spin of the electron through the electron’s intrinsic magnetic

moment (similar to the spin-orbit effects described in the previous chap-

ter). An incoming beam of spin-up and spin-down electrons scatters pro-

ducing two outgoing beams that are composed of predominantly spin-up

or predominantly spin-down electrons. The scattering process is not 100%

efficient (even at a theoretical level), so these scattered beams will not be

purely spin-up or spin-down (fig. 3.8a). The efficiency of the asymmetric

scattering process increases with the atomic weight of the target ∼ Z2 [35].

The scattering process additionally depends on the velocity and angle of

the incoming electron beam in a non-trivial and non-monotonic way that

can be optimised [36]. Pairs of channeltrons can be placed to measure the

asymmetry in the intensity of the scattered beams (nominally being due to

the spin-polarisation of the incoming electron beam). At i3, these are placed
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such that the spin component perpendicular to the sample surface plane can

be measured (out-of-plane), and the component of the spin in the sample

surface plane along the slit of the analyser can be measured (in-plane). The

efficiency of the individual detectors can also vary, providing an artificial

asymmetry in the intensity, so this must also be taken into account.

While Mott scattering makes use of relativistic spin-orbit effects of high

energy electrons, V-LEED employs very low energy electrons. In a V-LEED

experiment, an incoming beam of electrons is decelerated in the spin trans-

fer lens section to low energies (E = 6 eV at APE). The targets used are

magnetically ordered (1 × 1) FeO thin films grown on an MgO substrate.

If these FeO surfaces are well prepared, there will be easy axes of magneti-

sation at 90o to each other in-plane. These can be magnetised with a short

current pulse (I = 5 A at APE) in solenoids positioned along the in-plane

axes of the sample (fig. 3.8b). At APE, there are two targets with four pairs

of solenoids. These are positioned such that on one detector Sx and Sz can

be measured, and on the other Sy and Sz can be measured. The scattering

can take place with the remnant magnetisation of the target. The scattering

process is then through exchange scattering, which couples to the incoming

electrons spin directly through magnetism. In V-LEED experiments, there

is then only the need for a single detector, since the magnetisation can be

reversed to measure the spin-up or spin-down electrons. In principle, this

removes the need for normalising spectra (as is the case in the geometrically

opposed detector set up in a Mott scattering experiment).

In either case, Mott scattering or V-LEED, the polarisation is then given

by:

P =
1

S

IA − IB
IA + IB

(3.20)

where IA,B is the intensity of a given detector (in the case of V-LEED this

is of course the same detector but for opposite magnetisations of the tar-

get), and S is the Sherman function. This is simply a number used to cor-

rect for the inefficiency of the scattering process. Usually this is calibrated
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against a material with known spin-polarisation, such as the Au(111) Shock-

ley surface state (described in the previous chapter). For example, at i3, the

Sherman function is S = 0.17 meaning an incoming beam of electrons with

100% spin-polarisation (e.g. entirely spin-up electrons) produces a scatter-

ing asymmetry of only 17%. That is to say, there will only be a 17% greater

intensity on one detector than the geometrically opposed detector (once nor-

malised), despite the fully polarised incoming beam. At APE the Sherman

factor is S ≈ 0.3. The Sherman functions are quoted without error but

a quantitative analysis of the spin-polarisation of the measurements pre-

sented in this thesis is not necessary for extracting qualitatively the under-

lying physics.

With the polarisation calculated, the true spin-polarisation of a mea-

sured spectrum can be determined using:

I↑,↓ = Itot(1 ± P )/2 (3.21)

where Itot = IA + IB . This then scales the measured asymmetry such that it

reflects the true spin-polarisation measured.

3.3 Practical considerations

Sections 3.1 and 3.2 cover the main working principles and theory be-

hind ARPES and spin-ARPES measurements but have so far not explained

the practicalities of taking these measurements. Since all the ARPES and

spin-ARPES results presented were measured at synchrotrons (Cassiopée,

SOLEIL; i05, Diamond; i3, MAX III and APE, Elettra) this will be the focus

of this section.

3.3.1 Synchrotrons and beamlines

These measurements will sometimes require a dependence on light po-

larisation or a tuneable photon energy, which necessitates the use of syn-

chrotron light. An accessible introduction to synchrotron radiation and some

applications can be found in [37]. The following section summarises some
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of the key aspects from this reference, relating to the work carried out in the

thesis.

The basic physics underpinning synchrotron operation is that acceler-

ated charged particles emit electromagnetic radiation. Synchrotrons then

provide a closed loop for the electron to follow under vacuum. Partly the

acceleration is a centripetal acceleration provided by bending magnets. The

acceleration is given straightforwardly in this case by the Lorentz equation

and the power radiation by relativistic electrons on a circular orbit is given

by Schwinger’s formula. Together, these provide a loss in energy within a

complete orbit around the synchrotron of [37]:

∆Ee =
4π

3

e2

R

[
E

mc2

]4

(3.22)

where E, m and e are the electron energy, rest mass and charge respectively,

and R is the radius of the orbit (or synchrotron ring radius). This loss in

energy is compensated by a radio frequency cavity which stabilises the ring

energy, as well as quadrupolar magnets for stabilising the trajectory. Addi-

tionally, at the relativistic speeds of the electrons in their circular path, the

emitted synchrotron light is highly collimated in the propagation direction.

This is given by the so-called vertical half-opening angle (fig. 3.9a), which is

ψ = γ−1 ≈ mc2/E ≈ 1/(1957 × E[in GeV]), which for a 3 GeV storage ring

would give an angle of ψ ≈ 0.01o [37].

The energy spectrum produced by bending magnets is very broad and

not so easily tuneable and the polarisation is not so easily changed (being

mostly linearly horizontal polarised). A popular way to easily tune the en-

ergy and polarisation of the light is through an undulator (or a wiggler,

which is similar in principle). This is a device which is also placed in the

straight sections of the storage ring. It typically consists of a periodic array

of permanent or electromagnets (fig. 3.9b,c). The magnetic force experi-

enced by the electrons cause them to follow an oscillatory path through the

undulator producing highly collimated synchrotron radiation with each os-

cillation (fig. 3.9a). The sharper bends from the oscillations shifts the peak
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FIGURE 3.9: a) Definitions of physical quantities relating to
the trajectory of electrons through the undulator. An un-
dulator (as opposed to a wiggler), has a ‘wiggling angle’
θ ∼ γ−1. b,c) Schematics of an APPLE II type undulator de-
sign allowing for variable polarisation of light. Alignment
of poles producing a vertical field leads to horizontal os-
cillations and linearly horizontal polarised light (b). Phase
offsetting poles forcing in-plane magnetic field lines creates
vertical oscillations and therefore linearly vertical polarised

light (c). a) Adapted from [37], b,c) adapted from [38].

energy of the emittance to higher energies, since these require greater ac-

celeration. The coherent superposition of synchrotron radiation from the

oscillations then provides a greater intensity of radiation (so the intensity is

additionally proportional to the length of the undulator). The amplitude of

the oscillations can be easily changed (in some undulators) by changing the

size of the gap between the magnetic arrays (fig. 3.9b,c), therefore changing

the peak in photon energy. A smaller gap, increases the magnetic force expe-

rienced by the electrons, providing greater amplitude oscillations, yielding

higher energy photons. The wavelength of the light emitted by the undula-

tor is given by the following [37]:

λ =
λu
2γ2

(
1 +

K2

2
+ γ2θ2

)
(3.23)

where λu is the period of an oscillation through the undulator given by the

distance between magnetic poles (fig. 3.9b), K = e
2πmcλuB, for a magnetic

field strength B, and θ is the angle of the emitted radiation to the undulator

axis (fig. 3.9a). As well as the fundamental wavelength, higher harmonics
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in energy (shorter wavelengths) are emitted with λn = λ/n.

In addition to the tuneable photon energy, the polarisation vector of the

emitted light can be tuned. The polarisation vector is governed by the direc-

tion of the oscillations in the trajectory of the electrons through the undula-

tor. The direction of the oscillations through the undulator is defined by the

magnetic field set up by the periodic magnetic arrays. This can be achieved

in different ways but an example of a modern design of undulator is the AP-

PLE II type undulator shown in figure 3.9b,c. Linearly horizontal polarised

light is created when the electrons oscillate in-plane (horizontally), requir-

ing magnetic field lines out-of-plane (vertically). This is achieved by align-

ing poles such that out-of-plane field lines are aligned vertically across the

gap (fig. 3.9b). Conversely, linearly vertical polarised light requires in-plane

magnetic field lines. This is achieved by offsetting the adjacent magnetic

arrays (a ‘phase’ shift). It is required that the out-of-plane poles are op-

posite across the gap, since magnetic field lines cannot cross and this then

forces the magnetic field to be mostly in-plane (fig. 3.9c). Instead of shifting

the magnetic arrays such that two out-of-plane magnetic poles are aligned

laterally, it is possible to adjacently align an in-plane and an out-of-plane

array. This creates a magnetic field which forces the electrons to follow a

circular trajectory through the undulator, which is effectively a combination

of linearly horizontal and vertical polarised light. The handedness of the

trajectory through the undulator then defines the polarisation vector of the

light to be circularly left or circularly right polarised.

3.3.2 Photoemission end station

Undulators then produce highly collimated light with a tuneable peak in

photon energy, and a tuneable polarisation, however the peak still has con-

siderable width in energy. This broad peak must then be monochromated to

be practically useful in ARPES measurements. In general at beamlines this

is achieved with a diffraction grating, typically with on the order of ∼ 1000

lines/mm. Through Bragg’s law, this will diffract the incoming light with a

wavelength (or equivalently photon energy) given by the incident angle. In
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practice this can then be rotated (pitched), to diffract the desired peak wave-

length down the beamline. Higher orders of the light from the undulator

will of course also satisfy the Bragg condition and so they are not filtered in

this way. Since the diffracted light follows Bragg’s law, the light resolution

will naturally be better at smaller pitch angles of the grating. The monochro-

mated light is then directed down the beamline with a Gaussian spread in

intensity and resolution in wavelength away from the centre of the beam.

This can be improved by refocussing mirrors, and can be additionally im-

proved by blocking the path of the outermost part of the beam with move-

able slits in the path of the beam. Since it is the monochromator which sets

the photon energy, the undulator gap can simply be tuned to provide the

desired intensity, which is usually desired to be maximised. However, max-

imising the intensity can sometimes adversely affect the resolution, through

the increased density of electrons outside the solid, by electron-electron in-

teractions (space charge effects) so this can be tuned to instead reduce the

intensity if required.

Another practical consideration at this stage (light incident on the sam-

ple), which can affect the resolution of the measurement, is the temperature

at the sample surface. The temperature affects the occupation of electrons,

given by the Fermi function (eq. 3.13). This provides all measurements with

an energy broadening given by the Fermi distribution with a width kbT ,

as well as any temperature dependent interaction effects such as electron-

phonon coupling. The temperature can in general be controlled by boiling

cryogenic liquid (helium or nitrogen) in a cryostat in the sample manipu-

lator. This has to be thermally connected to the sample, and thermally iso-

lated from the rest of the manipulator and experimental chamber. Typically,

the sample is thermally connected to the cryostat by a thermally conductive

metal such as copper. This can be done with copper braids, which addition-

ally allow for in-vacuum motion of the sample, which is highly desirable for

ARPES measurements. These braids can remove heat from the sample stage

on the manipulator to the cryostat, where the boiled exhaust gas then re-

moves this from the system. The range of motion is at least partly governed
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by the freedom of movement of the cooling braids and so greater degrees of

freedom or range of motion often require a trade off in cooling power. By

now there are working manipulators that can reach low temperatures T = 5

K as well as allowing for three rotational degrees of freedom, but the design

and implementation is a formidable feat requiring great expertise.

As well as the light resolution, and the resolution governed by the tem-

perature which can be externally controlled, the resolution can be further

controlled using the analyser. This can be divided into three main parts:

the electrostatic lenses in the transfer lens section, the hemispherical deflec-

tors with entrance and exit slits, and the electron detector. The electron de-

tector consists usually of a multichannel plate (MCP), a phosphor screen

and a camera. Electrons emitted within an appropriate solid angle from

the sample enter the transfer lens section of the analyser, whereby elec-

trostatic lenses resolve their angle, guiding their trajectory into the hemi-

spheres through an entrance slit. As well as passing through the electrostatic

lenses, the electrons are additionally accelerated/decelerated in the transfer

lens section to an energy called the pass energy Epass, so that they can be

more easily measured in the hemisphere section. This also means that only

electrons within a range in energy close to the pass energy will pass all the

way through the hemisphere section and make it to the detector. A smaller

pass energy will therefore equate to a smaller spread of energies on the de-

tector, which is itself a fixed size so there will be a better pixel-to-energy

ratio. The resolution of a hemispherical analyser is given by [27]:

∆E = Epass

(
w

R0
+
α2

4

)
(3.24)

where R0 = (R1 + R2)/2 is the mean radius of the outer and inner hemi-

spheres, α is the acceptance angle, and w is the width of the entrance slit.

The most commonly used ARPES entrance slits are rectangular though

they can be curved or straight. Due to the electron optics, the paths of the

electrons have to cross in angle at the centre of the hemispheres (e.g fig. 3.5).

This means for a constant energy, electrons at the edge of the slit will have
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a greater path length through the analyser than those at the centre of the

slit. This has the effect that a line of constant energy will appear curved

on the detector for a straight slit, due to the extra path difference of the

electrons crossing at the back of the analyser. This path difference can be

calculated and accounted for by the manufacturer, who can provide appro-

priately curved slits. For the same slit width w these will typically have a

marginally worse energy resolution as the straight slit counter parts, but the

curved slit will result in a line of constant energy being measured as straight

on the detector. The length of the slit is the direction along which the anal-

yser will resolve the angles of the electrons onto the detector (in ARPES lens

modes). The width of the slit then defines the amount of integration in the

momentum direction perpendicular to the angle resolved direction. This is

additionally governed in the software by the angular lens mode, since for

the same slit width, a smaller angle mode will then integrate over less per-

pendicular momentum. This can be an important consideration for highly

dispersive features on the sample. Similar to the pass energy, a lens mode

resolving a greater angular range spread over a fixed detector size will have

a lower pixel-to-angle ratio.

3.3.3 Sample preparation

This covers some of the external ways the resolution of the measure-

ment can be controlled. Concerning the sample, there is of course the intrin-

sic lifetime broadening, the Fermi function, as well as any interactions that

contribute to the self energy. In addition however, any surface contamina-

tion will lead to incoherent scattering centres, which can further affect the

angle and energy of the photoemitted electrons through elastic or inelastic

scattering.

Residual gas adsorption onto the sample surface is governed by the ki-

netic theory of gases. The rate of adsorption of a number of gas molecules

∆N onto a surface area ∆A (in cm2) in a time ∆t is given by [21]:

∆N

∆t∆A
= n

(
P√
MT

)
· 4× 1022 (3.25)
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FIGURE 3.10: Cartoon demonstration of sample cleaving.
a) Top posted sample bound to sample holder using cured
epoxy. b) Meniscus of epoxy binding the top post firmly to
the whole sample surface. c) Cleaved crystal revealing two

clean surfaces along crystallographic cleavage planes.

where P is the pressure in mbar, M is the molecular weight of the gas, and

T is the temperature in Kelvin. Roughly, a monolayer is ∆N = 6 × 1014

particles per ∆A = 1 cm2. At a temperature T = 300 K and for CO gas

(M = 28) this can be rearranged to give the total time for a monolayer to

form:

t =
3.7× 10−6

P · S
(3.26)

for a sticking coefficient 0 ≤ S ≤ 1. Assuming all molecules stick (S = 1),

and assuming high vacuum (HV) pressure of P = 10−6 mbar, a monolayer

will form on the order of seconds. This warrants the need for ultra high

vacuum pressures in order to have the cleanest sample surfaces. This ad-

ditionally improves the inelastic mean free path of the electrons out of the

sample and travelling to the analyser which improves resolution.

Of course, simply having a UHV environment is not enough, samples

that have been exposed to air will have large contamination layers. Samples

must be prepared in situ in order to achieve and maintain clean surfaces.

This can achieved in multiple ways including sputtering and annealing, in

situ deposition of material or epitaxial growth techniques, or the famous

Scotch tape method. However, the technique used exclusively for this thesis

will be cleaving bulk crystals (fig. 3.10). This is achieved by gluing the

samples to a sample holder using Ag epoxy. This is often Epotek H21D

in our case, since it is electrically and thermally conductive, and has low

vapour pressure so maintains UHV pressures. It also cures quickly (15 mins,

at 120o ). After gluing the sample to the sample holder, we then glue on a

small ceramic rod (a top post) that has a smaller diameter than the sample
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surface (fig. 3.10a). We then cover the sample surface with epoxy and bind

this to the top post (fig. 3.10b) such that the weakest part will be the bonds

between cleavage planes of the sample (e.g. weak van der Waals bonds).

This is then cleaved in UHV environment revealing a clean surface attached

to the sample holder (fig. 3.10c). This works very well for layered bulk

materials, which well describes the main samples for which the results are

presented in the following chapters.
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Chapter 4

Spin-orbital texture of the giant

Rashba system BiTeI

4.1 Spin-splitting at the surface of noble metals and al-

loys

In the last chapters we saw why spin-orbit coupling is now attracting

attention and a mechanism for how it can arise in materials with broken in-

version symmetry. We began discussing the Au(111) surface state origin and

in particular the size of the spin splitting. The surface potential gradient, via

the original Rashba model, was shown to be too small an effect to be the sole

cause of the spin-splitting. Instead, the strong spin-orbit coupling strength,

caused by the large gradient in the potential near the heavy element (Au)

atomic cores was found to be a significant factor. The size of the splitting

in many materials is actually a combination of multiple factors, including

strong spin-orbit coupling strength. Before presenting our results on BiTeI,

a semiconductor known to have states that host a large spin-splitting, this

chapter will summarise some of the recent advances in understanding what

controls the size of spin-orbit splitting in general. Several recent reviews

comprehensively discuss this [4, 39], but the salient points are covered here.

There have been studies which have shown that the spin-splitting ob-

served does roughly follow that stronger spin-orbit coupling strengths lead

to larger spin-splitting. This is shown for example by the surface states of

the similar noble metal Ag(111) [40]. This is a much lighter element than Au
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and the spin-splitting is therefore correspondingly smaller, by their calcula-

tions. The calculated splitting at the Fermi level, ∆EF = 1.9 meV, was too

small to detect using ARPES. Further, much heavier elements should there-

fore have a larger spin-splitting from this interpretation. This is observed

for example at Bi(111) [41] and Ir(111) [42] surfaces, which have larger spin-

orbit coupling strengths than Au, and therefore have correspondingly larger

spin-splittings.

Considering quantitative comparisons however, the spin-orbit coupling

strength alone could not explain the observed difference in these spin-splittings.

For example, the spin-orbit coupling strength of the Au p orbitals is roughly

four times higher than that of Ag [40]. However, the spin-orbit splitting at

the Fermi level, ∆EF , is more than 50 times greater in Au than Ag. Making

a quantitative comparison for the splitting found in Bi(111) surface states,

Bi p orbitals have a spin-orbit strength of λ ≈ 1.5 eV, over three times larger

than that of Au. Comparing the splitting in momentum of the band maxima

from the Γ̄ point in both materials, k0 (fig. 4.1), the splitting is over four

times larger in the Bi(111) surface states. This again is quantitatively dif-

ferent from the expectation assuming spin-orbit coupling is the sole factor.

Further, the surface states of Cu(111), where the spin-orbit coupling strength

of Cu p is a third of that of Ag p [43], should by this naive interpretation have

the smallest spin-splitting at the Fermi level. However, recent laser-ARPES

measurements [44] show that this actually has a resolvable splitting in mo-

mentum at the Fermi level that is four times larger than that calculated for

Ag(111). This contradicts entirely what would be expected from the simple

spin-orbit coupling strength argument.

The spin-orbit coupling strength not being the sole factor was realised

early on by Petersen and Hedegård [24]. In addition to the strength of SOC,

they put forward in their model that the asymmetry of the wavefunction in

the vicinity of the nuclei at the surface has a significant effect. In their tight

binding model, the hopping integral between the in-plane px,y and out-of-

plane pz orbitals is given by γ = 〈pz(R)|V |px,y(R+ x)〉. This is effectively a
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measure of the asymmetry of the wavefunction. In the bulk this term van-

ishes due to inversion symmetry of the bulk crystal structure. However,

near the surface the wavefunction experiences inversion symmetry break-

ing. This reflects the fact that this is a surface state wavefunction and there-

fore has a decaying amplitude into the bulk. The effect of this is to allow for

px,y orbital mixing near the surface, creating an asymmetry of the surface

state wavefunction in the z direction. This then results in a large spin split-

ting of the electronic structure, from the wavefunction being in the vicinity

of the Au cores, where the gradient in the potential is largest. This is sup-

ported through experiments by adsorption of Xe on the surface of Au(111)

[43, 45]. The surface states of Au(111) under exposure to a monolayer of

Xe experience an increased spin-splitting at the Fermi level by ∼ 25%. The

closed p orbital shell of the Xe means there is little charge transfer between

the Xe layer and the Au(111) surface. Through Pauli repulsion, the Au(111)

surface state wavefunction is then forced closer to the Au atom cores, ex-

periencing a greater gradient in the potential, therefore increasing the spin

splitting [46].

The importance of the asymmetry of the wavefunction itself is also ex-

plained using density functional theory calculations on 23 layers of Au(111)

by Bihlmayer et al. [47]. They demonstrate that the decay of the surface

state amplitude into the bulk is what provides the asymmetry, and the large

gradient of the potential from the Au atoms is what governs the size of the

spin-splitting. Their model also suggests an importance of l to l ± 1 or-

bital mixing. They are able to explain the difference between the size in the

Rashba splitting for the surface states of Ag(111) and Au(111) by the ratio

of their d:p and p:s orbital composition. They explain that p orbitals ap-

proach the nucleus more closely than d orbitals, and correspondingly lead

to a larger splitting. This is supported for example by calculations for an

oxygen adsorbate layer on Gd [48]. Before adsorption, the charge density

is symmetric in the z direction at the surface (from mainly dz2 orbital char-

acter). After introduction of an oxide layer, the charge density is forced to

be strongly asymmetric in the z direction in the vicinity of the nuclei. This
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a b c

FIGURE 4.1: The crystal structure and electronic structure
of the Bi/Ag(111) surface alloy. a) The Bi atoms form an or-
dered sublattice protruding from the Ag(111) surface. b) The
nearly-free-electron-like Rashba splitting shown with dou-
ble degeneracy cutting through the Γ̄-point expected for SO
splitting. k0 gives the band offset measured from Γ, and ER
gives the energy offset measured from the degeneracy point.
c) Calculation of the partial charge density of the surface
state in Bi/Cu(111), showing the asymmetry of the wave-
function near the Bi core (and two Cu atoms). The Bi atom
is at z = 0 and the vacuum is from z > 0 (i.e. in direction
of arrowhead). The wavefunction is strongly asymmetric in
the vicinity of the nuclei. a,b) Reproduced from [49], c) re-

produced from [50].

is mediated by an admixture of pz orbitals (which are asymmetric in the z

direction, due to their phase) into the d orbital Gd surface states.

Clearly therefore, the size of the splitting is ultimately controlled by the

spin-orbit strength, the asymmetry of the wavefunction, its orbital compo-

sition (particularly orbital mixing) and modifying the surface potential gra-

dient. This can include not only a contribution from an out-of-plane poten-

tial gradient, but also an in-plane potential gradient. This is well demon-

strated by a class of surface alloys, where heavy atoms (Pb/Bi) are grown

with 1/3 monolayer coverage with a (
√

3×
√

3)R30o ordering on a substrate,

e.g. the (111) surfaces of Ag, Au, Cu, Si (fig. 4.1a) [49–52]. The Bi/Ag(111)

band dispersion is shown in figure 4.1b, with the characteristic Rashba split

bands. These are split in momentum with the band maxima at a momen-

tum k0, and a band crossing at the Γ̄-point, typical of spin-orbit Rashba-like

splitting. In Bi/Ag(111), the out-of-plane surface potential gradient and the

spin-orbit strength alone could not account for the size of the splitting (fig.

4.1b). This has a sub-monolayer coverage of Bi atoms at the surface and yet
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has a Rashba parameter an order of magnitude larger than for the Bi(111)

surface, and the largest of any material at this point.

Two models were proposed to described the size of the spin-splitting.

One proposal includes the in-plane potential gradient, caused by the hexag-

onal arrangement of Bi atoms on the Ag(111) surface, as higher order terms

in an anisotropic Rashba model [53]. The Rashba model for an isotropic

nearly free electron-like dispersion provides k-linear Rashba split parabolic

bands (chapter 2). Including the effect of the in-plane potential with hexag-

onal symmetry, they show that this introduces a strong in-plane anisotropy

in which the bands deviate from parabolae at high k. This in turn enhances

the spin-splitting. This anisotropy drives a hexagonal warping of the nom-

inally circular (isotropic) constant energy band contours. In addition, while

the conventional Rashba model has fully in-plane spin-polarisation, the in-

plane gradient in potential leads to a canting of the spin-polarisation out of

the surface plane in the z direction, producing a non-zero Sz component of

spin, at these higher in-plane k.

In the second model, by Bihlmayer et al., it is suggested that a significant

px,y orbital mixing with the spz orbital surface state wavefunction was im-

portant [54]. The surface state of Ag(111) is nominally spz derived which

would yield a typical k-linear Rashba splitting, through an out-of-plane

asymmetry of the wavefunction. They find however that a relaxation of

Bi atoms protruding normal to the surface, or buckling, (fig. 4.1a) induces

a mixing of px,y orbital contribution (consistent with providing an in-plane

gradient, as with the model from Premper et al. [53]). This in turn drives

higher order terms of Rashba splitting which dominate at higher momen-

tum and lead to an enhanced spin-splitting.

From this discussion so far, the size of the spin-splitting is then a com-

bination of factors. The size of the spin-orbit coupling strength is clearly

significant. This is influenced by the asymmetry of the wavefunction close

to the atomic cores (as in fig. 4.1c). The spin-splitting is enhanced by mod-

ifications to the surface potential which either shift the wavefunction with

respect to the atomic cores, or modify the potential gradient. Modifying
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the potential gradient can additionally promote orbital mixing of in-plane

orbitals which drive an in-plane potential gradient. The in-plane gradient

(or mixing of in-plane orbital character) in turn can drive an out-of-plane

spin-polarisation accompanied by deviations from isotropic constant energy

contours and non-parabolicity.

4.2 Giant Rashba splitting in the bulk

4.2.1 Crystal and electronic structure of BiTeI

Up until now, these effects have been exclusively discussed with regards

to surface states, where the inversion symmetry breaking is provided by

the surface of the crystal. In this section, we will see how these effects are

observed in a system with bulk inversion symmetry breaking. In particular,

this chapter will focus on BiTeI. A recent review on this material can be

found in [55]. BiTeI is composed of heavy Bi, Te and I atoms all with strong

spin-orbit coupling strengths, so spin-orbit effects are naturally expected

in the presence of inversion symmetry breaking. In this material, while of

course it has a surface, the dominant inversion symmetry breaking is in fact

within the bulk crystal structure itself.

The bulk crystal structure is described as having covalently bonded (BiTe)+

layers (a formal valence of +1), which are ionically bonded to the I− layers

(a formal valence of −1) [56] as shown in figure 4.2a,b. Each of these Bi, Te

and I layers are hexagonal in the a-b plane and stack with an order Te-Bi-I

(one unit cell) along the c-axis (fig. 4.2a). Due to the space group (P3m1)

and the stacking order, this is non-centrosymmetric in the bulk along the

c-axis. This can be seen simply by the following: take the inversion centre

to be the Bi layer, applying the parity operator maps an I atom onto a Te

atom and so the structure is not inversion symmetric. The opposite formal

valence of these layers, leads to an effective polarisation vector (or effective

electric field) along the c-axis. The effective polarisation, from alternating

charged layers throughout the bulk, gives a larger energy scale of the bulk

inversion symmetry breaking than the energy scale of the surface inversion
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FIGURE 4.2: Atomic and electronic structure of BiTeI. a)
Two unit cells of stacked layers of I-Bi-Te along the c-axis
and b) triangular orientation of atoms in the a-b plane look-
ing down the c-axis, together show the inversion symmetry
breaking. c) Corresponding bulk Brillouin zone. d) Resistiv-
ity down to low temperature showing metallic behaviour. e)
Fully relativistic bulk band structure of BiTeI showing it to
be a narrow band gap semiconductor. The near Fermi level
structure which will be the focus is highlighted in the red

boxes. c,d,e) Reproduced from [57].

symmetry breaking. This material therefore has atomic species with strong

spin-orbit coupling strengths, and inversion symmetry breaking, necessary

for spin-splitting of the electronic structure. The crucial difference to the ear-

lier discussion is that the inversion symmetry breaking here is in the bulk.

The bulk electronic structure is then shown in figure 4.2e [57]. This mate-

rial is a semiconductor with a narrow band gap (confirmed by optical spec-

troscopy to be EG = 0.4 eV [58]). Transport measurements have shown

that BiTeI exhibits metallic resistivity down to low temperatures (e.g. fig.

4.2d), and that the dominant carriers are n-type [59, 60]. BiTeI is then best

described as a degenerate n-type semiconductor. The metallic resistivity in

the bulk has been described simply by deviations from stoichiometry [59].

The lowest energy band gap is located at the Brillouin zone boundary in

kz and along the A-H direction (fig. 4.2c,e) [57]. The fully relativistic bulk

band structure calculation of Ishizaka et al. shows spin-orbit split bands

near the Fermi level. In particular, looking at the bands along A-H (fig.

4.2e), there are two bands that cross at the A point and have a band minima



66 Chapter 4. Spin-orbital texture of the giant Rashba system BiTeI

at a momenta away from this point. These bands, highlighted in red boxes

(fig. 4.2e), will be the focus of this chapter.

The near Fermi level electronic structure, as measured by ARPES (fig.

4.3), resembles the bands from the bulk DFT calculations along the A-H di-

rection. There are two nearly-free electron-like bands at the Fermi level (fig.

4.3). These are separated in momentum, crossing at the Γ̄ point and have

two concentric circular Fermi surfaces. This resembles the standard case

for Rashba splitting of a 2DEG. However, the Rashba parameter is reported

to be αR = 3.8 eVÅ, which is the largest that has been measured to date

(termed a ‘giant’ Rashba splitting [57]). This is an order of magnitude larger

than that of Au(111) and noticeably larger even than the Bi/Ag(111) surface

alloy.

These bands were shown to be spin-polarised in a sense consistent with

Rashba splitting (i.e. a predominantly in-plane counter-propagating spin

texture). This is supported experimentally by the initial spin-ARPES mea-

surements of Ishizaka et al. [57] and later spin-ARPES measurements by

Landolt et al. [61]. This is additionally supported in BiTeI by independent

spin-projected DFT calculations [57, 62]. The Rashba splitting of these bands

is actually present in bulk DFT calculations, suggesting this must be arising

from the bulk non-centrosymmetric crystal structure itself. This is in con-

trast to the previous section where the Rashba splitting is driven by a surface

inversion symmetry breaking. There are then two key aspects to discuss: the

size of the spin-splitting being so large, and the Rashba splitting originating

from the bulk as opposed to the surface inversion symmetry breaking.

The bulk origin of the Rashba splitting has been confirmed by many in-

dependent groups through theory and experiment, as well as for the sister

compounds of BiTeX (X = Br, Cl). DFT calculations require periodic bound-

ary conditions and so the simplest way these are performed effectively mod-

els a bulk crystal. Numerous DFT calculations have confirmed the bands

along A-H to be spin-orbit split in the bulk itself for BiTeI [57, 61–63] and

the sister compounds [64–66]. If this was solely an effect arising from the

surface, as with the previous section, this splitting should not be present in
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a b

FIGURE 4.3: a) The dispersion shows two spin-split nearly-
free-electron-like parabolae. b) The Fermi surface has two
concentric circular contours with an in-plane counter prop-
agating spin texture confirmed by spin-ARPES and DFT.
These findings are consistent with Rashba split bands. Re-

produced from [57].

the bulk calculations.

Additionally, the spin-splitting is confirmed to be a bulk effect by two

soft X-ray ARPES studies (SX-ARPES) [61, 67]. As mentioned in chapter

3, often ARPES experiments are in the vacuum ultra-violet (VUV) range

(hv ∼ 30 eV) for the highest surface sensitivity. SX-ARPES experiments, on

the other hand, exploit higher photon energies (e.g. 310-850 eV in [61]) to al-

low for a greater mean free path of the photoexcited electrons. These exper-

iments are therefore slightly more bulk sensitive and integrate over less kz .

The higher photon energies also mean neighbouring Brillouin zone bound-

aries along kz are more separated in hv than VUV-ARPES. These make it

better than VUV-ARPES at probing bulk (3D) dispersive bands. Both groups

(Landolt et al. and Sakano et al.) were able to see a bulk dispersive feature

at the Fermi level [61, 67]. This is entirely consistent with the DFT calcula-

tions showing this band along A-H to disperse in the kz direction along Γ-A,

further confirming this to be a bulk Rashba splitting.

The reason for the Rashba splitting being so large is explained in more

detail by Bahramy et al. [68], following their initial discovery. They use k · p

theory [14, 23], in which the Hamiltonian for a point k can be written as the
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sum of the Hamiltonian at a nearby momentum k0 and a perturbation term

in q = k− k0. They derive the following expression for the energy splitting

through second order perturbation theory of the resulting Hamiltonian:

∆ε(2)
m (k) =

~
m0

∑
n6=m

〈um|H(2)|un〉〈un|q · p|um〉+ c.c

εm − εn
(4.1)

where H(2) = ~2
4m2

0c
2 (∇V × p) · σ and is effectively the spin-orbit term aris-

ing from the atomic orbital momentum, and ui and εi are the eigenstates

and eigenenergies around the k0 where the expansion is valid [68]. This

term (eq. 4.1) then has three independent parts, each of which contribute

to the giant spin-splitting. Firstly, equation 4.1 depends on the size of the

spin-orbit splitting (through the matrix elements of H(2)), which is predom-

inantly from the strong spin-orbit coupling strength of bismuth (they quote

as ∆so ∼ 0.5 eV). Secondly, the spin-splitting depends on the size of the band

gap (though the denominator εm−εn), since this effect is derived from a cou-

pling of the valence and conduction bands. It is divergent as εm approaches

εn, i.e. enhanced by a smaller band gap. The spin-splitting is therefore in-

creased by the narrow band gap of BiTeI (EG = 0.4 eV [58]). Thirdly, the

5pz chalcogen bands are split above the 5px,y bands for the valence bands,

which is opposite for the Bi 6p conduction bands above the Fermi level (a

so-called negative crystal field splitting of the chalcogen bands). This is

seen schematically in figure 4.4. The negative crystal field splitting there-

fore gives a non-vanishing overlap of um and un in equation 4.1 since these

are the same symmetry character, resulting in a larger spin-splitting.

4.2.2 Bulk Dirac point in BiTeI

This negative crystal field splitting has another consequence: the band

level schematic of the bands near the Fermi level is then very similar to

that of the bismuth chalcogenide topological insulators [69, 70]. Owing to

their similar crystal structures, both contain hexagonal layers of alternating

atomic character, however Bi2Se3 retains global inversion symmetry. In both

Bi2Se3 and BiTeI, the bands nearest the Fermi level are predominantly Bi pz
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FIGURE 4.4: Band level diagram for (a) BiTeI and (b) Bi2Se3.
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band inversion in Bi2Se3 additionally induces a topological
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and chalcogen pz (fig. 4.4). In Bi2Se3, the SOC is strong enough to drive a

band inversion of opposite parity bands, and a topological surface state is

well known to exist in the inverted band gap [69, 71–73].

In fact, BiTeI is close to a topological phase itself. It was predicted theo-

retically that applying pressure would drive a band inversion of the bismuth

and chalcogen pz bands close to the Fermi level (fig. 4.4a), driving BiTeI into

a topological phase [70]. Several experiments have reported a phase tran-

sition occurring as a function of pressure [74–79], but there is significant

discrepancy among the critical pressure at which this transition occurs (pre-

dicted to be between Pc = 1.7 − 4.1 GPa [70]). These pressures are anyway

however experimentally difficult to reach using ARPES.

While it has a topological phase transition under pressure, even at am-

bient pressure BiTeI has a so-called π-Berry’s phase. A wave undergoing

a closed orbit would be expected to return to its initial parameters (ampli-

tude and temporal phase) but Berry described that in certain cases it can

acquire an additional geometrical phase [80]. In the solid state this is de-

scribed as electrons making a closed path in the Brillouin zone and if it

encloses a degeneracy point it acquires a Berry’s phase [81] (see fig. 4.5),

which is known to exist for example in graphene as observed by quantum
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a

b

c d

FIGURE 4.5: a,b,c) Different Fermi surface geometries and
example closed loops. Loops 1 and 2 acquire a trivial Berry’s
phase, while 3 and 4 encircle a degeneracy point and acquire
a non-trivial Berry’s phase. d) Calculated Fermi surface of
BiTeI. Both inner and outer Fermi surfaces, (a,b,c) Repro-

duced from [81]. (d) Reproduced from [70].

oscillations [69]. The surface states in topological insulators also acquire a

non-trivial (π) Berry’s phase, as the electron orbits the Dirac point [6, 82].

In BiTeI, a π-Berry’s phase is observed for both the inner and outer Fermi

surfaces as a phase shift in Shubnikov-de Haas oscillations [83]. This is in-

dicative of the orbits enclosing a bulk Dirac point in BiTeI (fig. 4.5d), i.e.

a Dirac point along kz . This is consistent with the assignment of a bulk

Rashba splitting observed in SX-ARPES and DFT calculations, correspond-

ing to a toroidal Fermi surface (fig. 4.5d). Evidence for a bulk Dirac point

in BiTeI have now been observed through quantum oscillations by several

groups [84–86].

4.2.3 Surface effects in BiTeI

As discussed, the normal state of BiTeI (a topologically trivial semicon-

ductor) is then well established to host a bulk Rashba splitting. However,

ARPES is inherently a surface sensitive technique and as such there has

been some controversy over the nature of the state being probed at the sur-

face. The surface is exposed upon cleaving, with the cleavage plane lying

between the greater-separated, ionically-bonded Te-I layers (figs. 4.2a or

4.6b,c). This reveals a polar surface of either tellurium (positively charged),
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FIGURE 4.6: Surface band bending potentials in BiTeI from
[63]. a) Core level shifts indicative of different surface poten-
tials arising from tellurium (red trace) or iodine (green trace)
surfaces. Schematic band bending for tellurium shown in
(b), and for iodine (c). Measured (d) and calculated (e) band
dispersions for tellurium surface and iodine surface (f,g).

Figure taken from [63].

or iodine (negatively charged) termination. Surfaces that are not charge neu-

tral (polar) are unstable and so undergo some reconstruction (structural or

electronic) to lower their energy. The ionic charge at the polar surface in-

duces an electric field that must be screened by the conduction electrons.

This happens at a length scale on the order of the Thomas-Fermi screening

length [20], given by: rTF ≈ 0.5(n/a3
0)−1/6, where n is the electron density,

and a0 is the Bohr radius. In metals, there is a large free carrier density and

so the ionic charge is efficiently screened over a small length scale (on the

order of Ångstroms). In the case of the degenerate n-type semiconductor,

BiTeI, the screening leads to surface charge accumulation layers of several

tens of Ångstroms [57, 63]. The potential at the surface experiences a grad-

ual change from the bulk potential corresponding to the accumulation of

additional charge, leading to surface band bending (fig. 4.6b,c and fig. 4.8a).

The band bending raises or lowers the potential at the surface relative to the

bulk potential, dependent on the termination. One result of this is that the

bands observed in photoemission are shifted in energy, comparing the two

terminations.



72 Chapter 4. Spin-orbital texture of the giant Rashba system BiTeI

-0.6

-0.4

-0.2

0.0

E-
E F

 (
eV

)

-0.4 0.0 0.4
k|| (Å

-1)

Max

Min

FIGURE 4.7: ARPES measurement of the near Fermi level
electronic structure with the light spot illuminating a mix-

ture of both tellurium and iodine terminated surfaces.

In the case of the tellurium termination, the reduction in the surface po-

tential compared with the bulk potential shifts the bands to higher binding

energies. This can be seen in X-Ray photoemission spectroscopy (XPS) mea-

surements (e.g Crepaldi et al. fig. 4.6a,b). All the core level binding energies

are shifted to lower binding energies corresponding to the downwards band

bending. The tellurium core level peaks are also correspondingly more in-

tense, due to the tellurium termination. The Rashba split electron-like con-

duction band is then observed at the Fermi level, corresponding to the bands

shifting to higher binding energies (fig. 4.6d).

For the iodine termination, there is a negative ionic charge at the sur-

face, which results in a hole-like inversion layer (accumulating holes at the

surface, with an electron-like bulk). The surface potential is raised in en-

ergy compared with the bulk potential, shifting the bands to lower bind-

ing energies. The XPS spectra then show that the core levels are shifted to

lower binding energies with respect to the tellurium surface (fig. 4.6a,c). At

these surfaces, Rashba split hole-like valence bands are observed close to

the Fermi level (fig. 4.6f).

Stacking faults or other defects mean that the surface exposed is often a
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mixture of tellurium and iodine terminations randomly distributed with a

domain size estimated from STM to be ∼ 100 nm [87]. This is smaller than

the typical size of a conventional ARPES beam spot (∼ 50-100 µm) and so

often a superposition of the two is observed in the measurements (fig. 4.7).

However, it is not impossible to measure on a predominantly tellurium or

iodine termination. While the polar surface leading to surface band bending

is now well established and generally agreed upon, there are however two

proposals as to the origin of the near-Fermi level state being probed in VUV-

ARPES: a quantum well state, or a true surface state.

4.2.4 Nature of the near Fermi level states at the surface of BiTeI

In the initial work of Ishizaka et al. [57], using a low-hv laser, the authors

observe spectral features beyond what would be expected for a single nearly

free electron-like Rashba split band. For a conventional Rashba split band

there would be two parabolae in the measurement, with band minima at

±k0. They see what could be described as two additional parabolae at lower

binding energy (fig. 4.8a,b). These spectral features were not present in

their He lamp data potentially owing to the increased k|| resolution of laser-

ARPES.

If there was no band bending, the conduction bands measured at the sur-

face would be at the same energy as those in the bulk. The downwards band

bending pushes the conduction bands measured at the surface to higher

binding energies. The downwards band bending (at a Te surface) from the

bulk potential, and the step up to the vacuum potential was originally sug-

gested by Ishizaka et al. to act like an asymmetric quantum well. This quan-

tum well-like potential would then confine electron-like states and produce

a ladder of quantised subband states. The lowest energy subband would

then be at the zero-point energy of the quantum well-like potential. The

quantum well potential given by the band bending can be difficult to treat.

Ishizaka et al. adopt a Poisson-Schrödinger approach [88] and model the ad-

ditional state from their laser-ARPES measurements as the second subband

in a ladder of quantum well states. Assuming the bulk carrier concentration
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FIGURE 4.8: Two proposals for modelling the surface po-
tential and origin of the states observed at the surface. a)
Quantum well potential from surface band bending confines
bulk states in ladder of QWS, observed by laser-ARPES in
(b). c) Step-wise potential from strong ionicity and break-
ing translational symmetry splits-off and confines states to
triple layer as calculated in (d). The potential is mostly un-
changed from the bulk potential, in both cases, by about 20
Å from the surface. Grey dotted lines in both correspond to
TLs of Te-Bi-I. (a,b) Reproduced from [57], (c,d) reproduced

from [62].

from transport measurements (nH = 4.5 × 1019 cm−3 [59, 60]) and calcu-

lating the surface carrier concentration from their observed Fermi surfaces

(n = 4× 1020 cm−3), they get reasonable agreement between the calculated

band bottoms for the first and second subbands, and the spectral features

observed in their ARPES measurements. The observed surface carrier con-

centration is consistent with a rigid shift downwards in energy as a result of

the band bending potential.

The opposing interpretation for the origin of the states observed at the

surface is that these arise as a result of the surface atoms experiencing a

reduced symmetry from the bulk environment (from the lack of neighbours

in the z direction) and therefore also a reduced potential. Initial theoretical

work lead by Chulkov [61, 62] confirm through DFT slab calculations that

an additional Rashba split surface state appears at higher binding energies
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(e.g. fig. 4.8c,d). This is confined to the surface layers as a result of the

stepwise potential arising from the layered crystal structure along the c-axis.

This produces a true surface state that is split-off from the bulk states. Since

this state is a result of the change in potential of the near surface layers,

and not a chemical change or reconstruction, it is still representative of the

bulk electronic structure and ‘inherits’ the bulk Rashba splitting and spin-

polarisation of the bulk states [62]. This is supported by the coexistence of

a 2D state and a 3D dispersive state observed in hv-dependent ARPES by

Landolt et al. [61].

Further, work from Crepaldi et al. shows the same 2D state as a func-

tion of photon energy. Through surface potassium dosing they artificially

increase the strength of the band bending at the tellurium surface [63]. They

observe the bandwidth and the Fermi momentum increase as a function of

potassium dosing as a result of the increased free carriers being donated

but the splitting in momentum at the Fermi level remains constant. If the

splitting was a result of the asymmetric potential of the surface quantum

well, the splitting would be expected to increase, confirming the splitting to

ultimately originate from the bulk. They estimate the band bending to be

increased by the surface dosing by> 40%, but no change to ∆kSO within er-

ror, whereas in the conventional Rashba model, since αR ∝ Ez , this would

result in a corresponding increase in ∆kSO. This is in fact consistent with

Ishizaka et al. who state that the splitting is predominantly inherited from

the bulk states and is enhanced by only a small fraction from the surface

quantum well [57].

Reports on the sister compounds BiTeX (X = I, Br, Cl) all show evidence

of similar Rashba split states but with differences in band widths, and split-

tings [64–66]. In the case of BiTeBr from Sakano et al., there are even three

subbands of the quantised bulk state visible, which are reasonably sharp in-

dicating their probable two-dimensional nature. The binding energies of the

band bottoms agree with their PS calculations, supporting their conclusion

that these are quantum well states. To the contrary, Eremeev et al. propose

that multiple surface states can exist ‘split-off’ from the bulk states at the
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FIGURE 4.9: High resolution ARPES of near Fermi electronic
structure of BiTeI on the tellurium surface measured at hv =
52 eV with p-polarised light. a) Dispersions along Γ̄-K̄ and
Γ̄-M̄. b) Corresponding Fermi surface. c) High resolution
dispersion along Γ̄-M̄ showing multiple subband states of
the quantised bulk Rashba split state. d) Guides to the eye
for the subband states. Green solid lines correspond to the
first subband (SB1) of Rashba split parabolae, and purple
dashed lines correspond to the second subband (SB2). e) A
cartoon band bending potential V (z) near the surface in the
z direction. The energy of SB1 and SB2 are schematically
shown indicating the purple dashed lines are higher in the

quantum well than the green solid lines.

different trilayers (Te-Bi-I) along the c-axis. These are bound to the surface

by the barrier formed as the stepwise potential steps up to the bulk potential

[65]. At certain kz the lower binding energy (high subband) split-off states

overlap the bulk states according to their calculations.

Our measurements on BiTeI provide evidence for the quantum well-like

interpretation of the states observed at the surface. Our measurements have

been carried out at a combination of the i05 beamline at Diamond Light

Source, UK, and the Cassiopée beamline at SOLEIL, France, both allowing

variable linear and circular polarisation and variable photon energy in the
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VUV range. The light spot is small enough (∼ 50-100 µm) in both cases that

we can probe a region we determine to be predominantly a tellurium termi-

nated surface. We initially determine this from core level shifts and reducing

the contribution from the lower binding energy peak corresponding to the

iodine surface. This can be confirmed from the near Fermi level electronic

structure in which the downwards band bending pulls the conduction band

down. This then shows electron-like states at the Fermi level. We can op-

timise our light spot on the sample by reducing the spectral weight from

hole-like states observed at the same binding energy on the iodine termi-

nated surface (fig. 4.7). In principle, the XPS measurements themselves, as

well as showing the difference in potential between the two surface termina-

tions, could show the difference in potential between split-off (or subband)

surface states and the bulk. This effect is similar between the two theoreti-

cal interpretations and subtle compared with the magnitude of the potential

difference induced by the band bending and the linewidth of the XPS spec-

tra. Analysis of this would be challenging and interesting but is not a focus

of this thesis.

Figure 4.9 shows our measurements of BiTeI of the near Fermi level

states. In figure 4.9c, there are multiple dispersive features evident. For

a Rashba split 2DEG, we would expect a single parabolic band split into

two parabolic bands separated in momentum from the Γ̄-point by k0 (e.g.

green solid lines in fig. 4.9d). These would give two concentric circular

Fermi surfaces. Cutting this along a high symmetry direction e.g. M̄-Γ̄-M̄,

this would give four Fermi crossings (two crossings from each of the two

parabolae). We have stated that the tellurium termination leads to a down-

wards band bending which can be treated as a quantum well potential at

the surface (fig. 4.9e). This quantises the bulk Rashba split states in a lad-

der of subband states at different binding energies lower than the zero point

energy. Each subband state will therefore contribute two concentric Fermi

surfaces, and four Fermi crossings in a cut along a high symmetry direction.

In our data, in figure 4.9b, we clearly see four concentric Fermi surfaces.
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This is an indication that we might be probing two subband states. Mea-

suring a dispersion along the high symmetry direction M̄-Γ̄-M̄ (fig. 4.9c),

we clearly see eight Fermi crossings. These can be attributed to two sub-

band states. Tracing the outermost crossings in the data (corresponding to

solid green line in fig. 4.9d), these disperse in energy down to a conduction

band minimum for this Rashba split state at ESB1
CBM = 340 ± 10 meV. This

is the deepest binding energy state and so corresponds to the first subband

(SB1) of the quantum well. This Rashba split subband state is clearly com-

posed of two approximately parabolic bands which are separated in mo-

mentum by kSB1
0 = 0.055 ± 0.005 Å−1 from the Γ̄-point, crossing at an en-

ergy ESB1
R = 120 ± 10 meV from the CBM, extracted from fits. There are

clearly an additional set of bands at lower binding energy, with band min-

imum, ESB2 = 175 ± 5 meV, corresponding to the second subband state

(SB2) (dashed green line in fig. 4.9d). These are also noticeably Rashba split

and through fitting we can extract a Rashba energy, ESB2
R = 85 ± 5 meV,

and CBM splitting kSB2
0 = 0.050 ± 0.005 Å−1 assuming a simple parabolic

model.

From our data there is a very clear hexagonal warping of the outer Fermi

surfaces, with the warping being greatest along the Γ̄-K̄ direction. At higher

in-plane momentum, the simplified Bychkov-Rashba model [2] becomes

a less appropriate approximation and higher order terms to the Rashba

Hamiltonian arising from a k · p interaction can be included subject to the

symmetry constraints of the crystal structure [23]. Anisotropy of the bands

leading to hexagonal warping at higher k|| has been seen in the related sur-

face states for bismuth chalcogenide topological insulators (e.g. [73]) and

for several other strong spin-orbit materials (e.g. [49]). For C3v symmetry,

this is introduced for the TI surface states by Fu [89], and by Frantzeskakis

and Grioni for the spin-orbit materials with the same symmetry [90]. The

C3v (trigonal) crystal field has also been proposed by Ishizaka et al. to be

the cause of the hexagonal warping of these bands, adding a term in the

Hamiltonian proportional to (3k2
x − k2

y)kyσz [57]. The hexagonal warping

of the bands is clearly present in at least the outer most of our measured
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Fermi surfaces. This can be understood since this term is cubic in k and so

becomes more significant at high in-plane momentum. This appears in the

Hamiltonian with the following form:

H(k) = E0(k) + αR(kxσy − kyσx) +
λ

2
(k3

+ + k3
−)σz (4.2)

where E0(k) is the free-electron kinetic energy term, the second term is the

typical k-linear Rashba Hamiltonian, and the third term is the k-cubic term

with k± = kx ± iky. This gives the dispersion relation:

E±(k) = E0(k)±
√
α2
Rk

2 + λ2k6cos2(3θ) (4.3)

where θ is the azimuthal angle the k vector makes with the x-axis (Γ̄-K̄ direc-

tion), and the two eigenvaluesE± correspond to the bands above and below

the Dirac point. A consequence of this Hamiltonian now not explicitly ex-

cluding σz (as the Rashba-Bychkov model does), is that the Sz component

of spin increases as a function of momentum. The anisotropic hexagonal

warping at higher momentum is included in calculations for BiTeI in the

initial work of Ishizaka et al. [57], and as expected from the higher order

correction it drives a canting of the spin vector in the out-of-plane direction.

This canting of the spin in the out-of-plane direction at high k as a result

of warping is well known in topological insulators and has been measured

in spin-ARPES experiments [91]. There is therefore some evidence for this

warping term in BiTeI.

Additionally, from this formula for the dispersion relation (eq. 4.3),

along the Γ̄-M̄ direction with θ = 30o , the contribution which is cubic in

k vanishes. This then reduces to the simple parabolic 2DEG case with a lin-

ear Rashba splitting along this direction. It has been suggested that these

bands have a non-parabolicity beyond a simple 2DEG model [57, 62]. In

our data, there is hexagonal warping of the outer band, with the corners of

the hexagon pointing along the Γ̄-K̄ direction. However, the dispersion (fig.

4.9c) along Γ̄-M̄ is still clearly not perfectly parabolic. Equation 4.3 does not

then fully explain the non-parabolicity of these bands in BiTeI as they have
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fits. b,c) Fit residual for each SB2 (b) and SB1 (c). d) ∆E vs
k|| for the two subbands. In the conventional Rashba model,

the gradient is a constant equal to the Rashba parameter.

done in other strong spin-orbit materials [89, 90]. We can show this simply

by fitting the position of the bands in our data and assuming a parabolic

2DEG model. The results are shown in figure 4.10.

In figure 4.10a, the extracted peak positions of the dispersion in figure

4.9c are shown. These are all Lorentzian fits with the band bottoms being

better fit by EDCs and the band tops being fit better by MDCs. The red

lines correspond to fitting these extracting peak positions to a conventional

parabolic Rashba model. These are obtained by fixing the band bottom in all

cases. For both subbands, the Kramer’s degenerate crossing of the bands is

significantly underestimated. In addition, towards the band bottoms of all

subbands and branches (positive and negative momentum offset), the dis-

persion peak positions are lower in binding energy. This switches towards

the band top where the peak positions are higher in binding energy than the
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parabolic fit. This is verified by the fit residual, defined as the difference in

energy between the fit and the data. Non-random structure in a residual can

be an indication that the chosen fit function is not sufficient. This has impor-

tant implications for defining the strength of the Rashba interaction in this

material. The Rashba parameter is typically extracted assuming a parabolic

2DEG model. This is shown in figure 4.10d. The difference in energy, ∆E,

for peak positions extracted away from k|| = 0 (as shown in the inset) is

plotted for each subband, for the range of data available. In a conventional

Rashba split 2DEG model, plotting ∆E vs k|| yields a straight line through

the origin with a gradient equal to the Rashba parameter, αR. This has a

clear deviation at higher in-plane momentum, though even close to the Γ̄

point this is not ideally Rashba-like. The Rashba parameters obtained are

also well in excess of the value published by Ishizaka et al. of αR = 3.8 eVÅ,

despite the band offset, k0, and Rashba energy ER being comparable [57].

This could be explained as resulting from non-parabolicity from a cou-

pling between the valence and conduction band in a k · p formalism since

this material has a narrow band gap and states near a high symmetry point

[14]. This material is clearly well described within a k · p formalism since

the work of Bahramy et al. does an excellent job at reproducing the size of

the spin-splitting (eq. 4.1) [68]. The narrow band gap allows for greater cou-

pling of upper valence bands, and lower conduction bands, and these states

are located at small k around the Γ̄ point, so a k ·p expansion is valid. In the

limit that ∆SO � EG, this method provides a functional form that makes

the dispersion more linear away from the band bottom [14, 88]. This limit

is however inappropriate in the case of BiTeI and a more involved deriva-

tion from k · p theory is required [92], outside the focus of the results pre-

sented in this chapter. Additional deviations from parabolicity have recently

been observed in Rashba split states of the surface quantised bulk bands in

Bi2Te2Se [93]. There, the anisotropy was explained as further higher order

corrections, which include the non-parabolicity as an extra k-cubic term (fol-

lowing [94]), as well as an effective mass which is anisotropic in azimuthal

angle. The origin of the non-parabolicity is still then not well understood
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and will require more detailed theoretical treatment to uncover the full de-

pendence of the spin-splitting in this material. The non-parabolicity does

not have an effect the main conclusions of this thesis but our measurements

demonstrate there is non-parabolicity of the bands beyond simply a higher

order Rashba term.

Beyond the non-parabolicity and anisotropy, our data show that all eight

of these Fermi crossings have small linewidths (fig. 4.9c). At these low pho-

ton energies, small linewidths can be an indication of the two-dimensional

nature of the underlying states (discussed in Chapter 3). To further con-

firm the 2D nature of all eight of these crossing we have performed photon

energy dependent ARPES.

Figure 4.11 shows an MDC measured at the Fermi level for the QWS at

the tellurium terminated surface of BiTeI for hv = 30 − 70 eV (1 eV steps)

using p-polarised light. From figure 4.9 it is clear there should be eight peaks

in the Fermi level MDC, all of which we see clearly in figure 4.11, across a

range of photon energies (prominently, for example at hv = 52 eV). These

peaks are well fit by Lorentzian profiles and resolvable for a wide range

of photon energies. For all eight peaks, the peak position does not change

significantly with photon energy, as might be expected from the bulk band

calculations along the direction Γ-A. This indicates negligible out-of-plane

dispersion for all eight crossings. The c-axis lattice parameter is c = 6.854

Å [56], giving an approximate Brillouin zone spacing of kz = 2π/c ≈ 0.917

Å−1. At k|| = 0, assuming an inner potential as given by Landolt et al.

[61], this gives a range of kz ≈ 2.5 − 4.1 Å−1 for our photon energy range

hv = 30− 70 eV, so these states are dispersionless for a full Brillouin zone in

kz , indicating their 2D nature. The peaks are clearly resolvable for (at least)

a full Brillouin zone with minimal diffuse intensity corresponding to bulk

states observable (i.e. dispersive features).

The additional fully vertical (flat features in k|| at a given hv) stripes

in intensity correspond to higher harmonics of the selected photon energy

directly exciting a core level. The monochromator filters wavelengths of

light according to Bragg’s Law and so multiples of wavelengths (photon
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directly.

energies) corresponding to higher orders are also incident on the sample

(chapter 3). These typically only contribute diffuse background since there

are usually no sharp, dispersive spectral features deep in binding energy.

At some photon energies, these higher orders of light can excite directly a

core level: the ejected core electron will have a kinetic energy coincident

with a valence state electron excited by the lower order light, giving a flat

(non-dispersive) spectral feature at the same kinetic energy as the valence

states.

4.2.5 Resonant enhancements for atomic specificity

Further to providing information about the dimensionality, the photon

energy dependent spectral weight can provide information about the atomic

character of the underlying states, through resonant enhancements of spec-

tral weight. Conventional ultraviolet photoemission spectroscopy (UPS) ex-

cites a system from a ground state (fig. 4.12ai) into a final state with a va-

lence hole and a photoexcited valence electron (fig. 4.12aii). If an electron is
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FIGURE 4.12: a) Schematic of two paths (ai-aii or ai-aiii-
aiv) to the same final state via conventional UPS or reso-
nant enhancements through Auger-like processes. b) Photon
energy dependent measurements of an MDC at the Fermi
level (±15 meV ) of BiTeI in the range hv = 22 − 32 eV us-
ing p-polarised light along the Γ̄-M̄-direction showing pro-
nounced spectral weight variation. c) Intensity of the peak
indicated by the box as a function of photon energy (cor-
responding to the outer band). The multiple traces show
the binding energy dependent peaks in the spectral weight
enhanced at the bismuth O-edge indicating a resonant en-
hancement. The two peaks correspond to the splitting of the

Bi 5d spin-orbit doublet. Cartoon adapted from [95].

photoemitted from the Fermi level, EB = 0, then the equation for the con-

servation of energy in the photoemission process (eq. 3.15) can be written

as Ek = hv − φ. Therefore the photoemitted electron at the Fermi level has

a continuously tuneable energy, provided hv > φ.

The photon energy can be tuned such that it coincides with the energy

of a so-called absorption edge in the material, with an absorption threshold

energy, E0. This is defined as the energy at which core holes can be created

within a particular electron shell (and so is closely related to the binding

energy of that core shell). If the photon energy is tuned such that it coincides

with the absorption threshold energy of a deeper lying core electron shell, a

core electron can be excited to an unoccupied valence state, with energy Em

near the Fermi level (fig. 4.12aiii). In this case, the photon must supply an

energy hv = E0 + Em.

Core hole lifetimes are short (by the uncertainty principle, due to their
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larger energy than states near the Fermi level). The system will then relax

back to the ground state which it can do in a vast number ways involving

inelastic scattering of the electron, or emission of a photon or electron. The

relaxation process which is relevant for resonant photoemission is that in

which the excited electron can decay back into the core hole directly, simul-

taneously ejecting a valence electron in an Auger-like process (fig. 4.12aiii)

[96]. This process leaves the system in a one-hole final state with an ejected

valence electron, which is the same final state as with conventional UPS.

The simultaneously emitted valence electron in this process receives the full

energy of the excited electron in the relaxation back to the core hole. It there-

fore has an energyEk = Em+E0−φ = hv−φ, identical to the direct photoe-

mission case. This process can result in a resonant enhancement of the pho-

toemission intensity, through interference of these two final states (through

direct and Auger-assisted photoemission). In particular, since this process

involves bringing the photon energy into resonance with a core shell ab-

sorption energy, this resonant enhancement depends on the atomic species,

providing element specific resonant enhancements. We exploit this in our

measurements to gain atomic specificity. First we will approach how this

occurs.

Including the resonance process, the photoemission intensity can be writ-

ten as a sum of the direct photoemission pathway, with additional terms

corresponding to the resonant pathway [96]:

I(E) = 2π
∑
f

∣∣∣∣∣〈Ψf |Vr|Ψi〉+
∑
m

〈Ψf |VA|Ψm〉〈Ψm|Vr|Ψi〉
Ei − Em + iΓm/2

∣∣∣∣∣
2

δ(Ef −Ei) (4.4)

where |Ψi〉, |Ψm〉, |Ψf 〉 are the initial, intermediate and final states respec-

tively with energies Ei,m,f . Vr denotes the radiative interaction, and VA de-

notes the Auger decay interaction strength. The lifetime of the core-excited

state |Ψm〉 provides a linewidth Γm.

Of these two pathways (the direct ionising pathway and the resonant

Auger-assisted autoionising pathway), the direct pathway changes more

slowly with photon energy than the resonant channel, which changes rapidly
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a b

FIGURE 4.13: a) The Fano lineshape for various values of the
asymmetry parameter, q. b) Early photoemission measure-
ments showing a Fano resonance in nickel. (a) Reproduced

from [97], (b) reproduced from [98].

as the photon energy is tuned through the resonance. The contributions to

the photoemission intensity from the amplitudes of the transition matrix el-

ements (eq. 4.4) for the different pathways interfere with different phases

above and below the resonant energy. This constructive and destructive

interference gives a characteristic asymmetric lineshape for the resonant

enhancement in intensity. Asymmetric lineshapes of this nature were de-

scribed by Fano in 1961, having the form [97]:

I =
(q + ε)2

1 + ε2
(4.5)

where ε is a reduced energy which is zero at the resonance energy, and q

is a factor governing the asymmetry, proportional to the ratio of transition

probabilities resulting from the two pathways [96]. The larger q value, the

greater the effect of the resonance, and the sign of q indicates the phase of

the resonance (i.e. being constructive or destructive, above or below the

resonance energy) [99–101].

Figure 4.13a shows calculated Fano lineshapes for various strength asym-

metries given by the value of q. Fano interference or resonant enhancements

in intensity were first observed in photoemission for the metallic Ni(001)
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surface for a satellite peak in the photoemission spectra [98]. The intensity

of this satellite feature as a function of photon energy was found to follow a

Fano lineshape (fig. 4.13b) at photon energies corresponding to transitions

from deeper lying 3p states to unoccupied near-Fermi level 3d states. In the

case of the nickel surface, the two interfering pathways are:

3p63d94s+ hv → 3p53d104s (4.6)

3p53d104s↔ 3p63d84s+ e− (4.7)

and

3p63d94s+ hv → 3p63d84s+ e− (4.8)

where the first expression describes absorption of a photon producing the

given intermediate state (eq. 4.6), and the second expression shows the

Auger-assisted autoionisation process of an electron decaying back into the

3p level and ejecting a 3d electron (eq. 4.7). The final state given by equation

4.7 can be produced also through direct UPS, given in the third expression

(eq. 4.8).

In our case, it is clear from figure 4.12 and figure 4.14 that we also observe
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asymmetric peaks in intensity as a function of photon energy. These features

occur around energies corresponding to the bismuth O-edge, comparable

with the binding energy of the Bi 5d core level. We can then attribute these

features to be a resonant enhancement of the bismuth derived states at this

energy. Considering only the bismuth states, the two relevant interfering

pathways are arising from:

5d106p3 + hv → 5d96p4 (4.9)

5d96p4 ↔ 5d106p2 + e− (4.10)

and

5d106p3 + hv → 5d106p2 + e−. (4.11)

Further evidence for this is given by the fact that this effect increases

approaching the band bottom, which is known to be more bismuth domi-

nated, since there is less mixing of tellurium atomic character at the band

bottom [70]. The extracted intensity profile has two peaks which are asso-

ciated with the spin-orbit splitting of the 5d core level, so the mj = 5
2 peak

is less deeply bound than the mj = 3
2 peak. We can fit the two peaks to

Fano lineshapes and extract asymmetry parameters (shown for the deepest

binding energy trace in figure 4.14) and in the region corresponding to the

resonant enhancement this reproduces the measured intensity profile rea-

sonably well. The total fit is a summation of the two Fano lineshapes with a

global intensity scaling factor (a constant scaling factor used for both peaks).

The dip in intensity is potentially then a result of the destructive interference

from the Fano-like resonance.
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FIGURE 4.15: Polarisation-dependent ARPES of near-Fermi
level states in BiTeI taken on resonance (hv = 28 eV). Dif-
ferences in the spectral weight are predominantly due to the

symmetry of the underlying orbital character.

4.3 Probing the orbital texture

4.3.1 Probing the orbital texture:

Dispersion measurements

In this way we have shown we can control our measured spectral weight

to resonantly enhance the bismuth derived character, gaining atomic speci-

ficity. The incoming light can not only be tuned to give us atomic sen-

sitivity but also atomic-orbital sensitivity. This can be achieved through

polarisation-dependent ARPES (described in Chapter 3). It was shown that

the one-electron transition matrix element is non-vanishing when the par-

ity eigenvalue of the light and of the initial state orbitals are the same. For

linearly polarised light, and for p-orbitals (which make up the near-Fermi

level states in BiTeI), p-polarised (s-polarised) light predominantly probes

px,z (py) orbitals (given the assumptions discussed in chapter 3).

Figure 4.15 shows three spectra of the conduction band states measured

‘on resonance’ with both linear polarisations, and the difference spectra.

From now on, we define ‘on resonance’ as having hv = 28 eV, which co-

incides with the Bi O-edge, equivalently corresponding to the Bi 5d core-

levels. Measurements taken in both linear light polarisations show the two

Rashba split parabolae and there are hints of the second subband state (e.g.
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FIGURE 4.16: Linear polarisation-dependent ARPES of
near-Fermi level states in BiTeI measured ‘off resonance’

(hv = 30 eV).

the band bottom EB ≈ 200 meV, similar to that extracted from our previous

measurement).

The most striking difference is in the outer band. This has strong in-

tensity towards the band bottom when probing with p-polarised light (fig.

4.15), which we can understand given the lowest energy states should be

predominantly Bi pz from band structure calculations and crystal field con-

siderations [70]. The spectral weight of the outer band diminishes towards

higher in-plane momentum, which corresponds also to lower binding en-

ergy (towards the Fermi level). This part of the outer band is much stronger

when probing with s-polarised light, which is consistent with a greater mix-

ing of the Bi in-plane p-orbitals (in this case highlighting the py component).

This can be seen more clearly in the difference spectra.

Tuning the photon energy off resonance (see fig. 4.16), there is no longer

a predominance of spectral weight from bismuth atomic character. At these

low photon energies, the kinetic energy associated with a conduction band

electron leads to a mean free path of λ ∼ 5 Å, compared with a Te-Bi

distance of 3.826 Å and Bi-I of 5.532 Å [59]. The exponential attenuation

of the photoemission intensity into the bulk therefore gives us a generi-

cally greater sensitivity to tellurium atomic character at the tellurium termi-

nated surface. By the Beer-Lambert law for photoemission, close to normal
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emission, this reduces the photoemission intensity from bismuth atoms by

∼ e−d/λ = 0.46I0 and for iodine by 0.15I0. In addition, the photoionisa-

tion cross-section for tellurium compared with bismuth at these energies is

σTe/σBi = 1.369
0.8964 = 1.538 [102]. These effects should give a stronger con-

tribution from tellurium derived states, but the strong spin-orbit coupling

makes the wavefunction a mixture of contributions from all the relevant

atomic orbitals, which in this case is predominantly Te 5p and Bi 6p [70].

This can partly be seen in the off resonance dispersion measurements

(fig. 4.16). The spectral weight distribution for both p- and s-polarisation is

very different to the on-resonance equivalents. For the dispersion measured

with p-polarised light, the spectral weight is shifted away from the band

bottom and is shifted additionally to the inner band. Measuring using s-

polarised light, the spectral weight is shifted almost completely from the

outer band to the inner band. This implies there is a greater contribution

from py orbitals of the inner band to the spectral weight at this energy. By

the arguments above, and given that now the condition for resonance is

not satisfied, this could be attributed to a contribution from the tellurium

atomic orbital character (but further analysis to come will strengthen this

assignment).

4.3.2 Probing the orbital texture:

Constant energy contour measurements

The orbital composition of the bands can be determined perhaps most

clearly from constant energy surface (CES) showing the full in-plane mo-

mentum dispersion (kx-ky) of the conduction band states. The dispersions

were measured in a geometry where the analyser slit is defined as being

along ky (fig. 4.17c). Figure 4.17 shows constant energy surfaces at various

points in binding energy for the conduction band states. These have been

measured with the photon energy tuned on resonance (hv = 28 eV) and us-

ing s-polarised light, so spectral weight can be considered predominantly

Bi py derived. For simplicity we define a variable α which is the azimuthal

angle measured clockwise from the positive ky direction as in figure 4.17.
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FIGURE 4.17: Constant energy surfaces measured using s-
polarised light, on resonance (hv = 28 eV), for the conduc-
tion band states in BiTeI. Measured along (a) Γ̄-K̄, and (b) Γ̄-
M̄, at binding energies corresponding to (i) the Fermi level,
(ii) the Dirac point, and (iii) close to the band bottom, as in

the schematic (c).

Focussing first on the outer band, there is a clear peak in the spectral

weight at positive and negative ky for kx = 0 (i.e. α = 0, π) of this contour.

This peak is seen most clearly for the CES measured along Γ̄-K̄ at the Dirac

point (fig. 4.17aii), but a similar spectral weight distribution can be seen for

the outer band for all CESs in figure 4.17. When measuring using s-polarised

light, the spectral weight in this case should predominantly be derived from

py orbitals. Peaks in the spectral weight therefore indicate a greater py orbital

character, under these conditions. The azimuthal distribution of the spectral

weight for the outer band in figure 4.17a suggests py orbital character at

the ‘top’ and the ‘bottom’ of the band (or α = 0, π). They are therefore

radially aligned to the constant energy contour (fig. 4.18b). In addition,

the suppression of spectral weight at positive and negative kx for ky = 0 (i.e

α = π/2, 3π/2) for the outer band could suggest a lack of py orbital character

at this point.

There could be other geometrical, interference or final state matrix ele-

ment contributions which could explain this, without requiring a suppres-

sion of py orbital character. One test is to rotate the sample azimuthally. If

the spectral weight is unchanged then it suggests an ordering of the orbitals

to the band contours which is rotationally symmetric in the lab frame. We
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rotate our sample azimuthally such that the measurement plane (along the

lab ky direction) lies along the Γ̄-M̄ crystallographic direction (fig. 4.17b).

The spectral weight distribution is qualitatively unchanged, with peaks in

the spectral weight on the outer band at the top and the bottom or α = 0, π

(fig. 4.17b). If this state was predominantly derived from py orbital char-

acter and the spectral weight suppression was purely a geometrical effect,

then rotating the sample will have changed the azimuthal distribution of

the spectral weight. Clearly this is not the case. Leaving the spectral weight

unchanged could be an indication that the suppression in spectral weight is

coming from a predominantly px derived orbital character at the ‘left’ and

‘right’ of the outer band or α = π/2, 3π/2 (fig. 4.18c). This kind of ordering

of the orbitals around the contour would then be unchanged under rotation.

There is then an ordering of the orbitals with the momentum directions, in

a similar sense to spin-momentum locking. This is most evident closer to

the Dirac point for contours with smaller in-plane momentum but there are

apparent deviations from the simplest picture as the in-plane momentum of

the contour is increased and the spectral weight distribution is correspond-

ingly more complicated. Potential reasons for this will be discussed in this

chapter but for now we will discuss the simplest underlying principle of

the orbital ordering and later discuss reasons for departures and possible

avenues for further understanding.

Focussing now on the inner band, at the Fermi level (fig. 4.17ai), the az-

imuthal spectral weight distribution is switched compared with the outer

band. Here the spectral weight has peaks at α = π/2, 3π/2 of the inner

band, and is suppressed towards α = 0, π. Probing with s-polarised light,

peaks in the spectral weight should therefore indicate a predominance of

py orbital character. There should therefore be a tangential alignment of py

orbitals to the inner band at the Fermi level (fig. 4.18b,c). We can get a qual-

itative understanding of how this evolves by comparing against the other

constant energy contours (fig. 4.17a). Precisely at the Dirac point, the inner

band collapses to a point in kx-ky with no azimuthal dependence to the spec-

tral weight by definition. Consider below the Dirac point, deeper in binding
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energy, towards the band bottom (fig. 4.17aiii). The inner band is visible in-

side the outer band as expected, and a suppression of the spectral weight is

observed at α = π/2, 3π/2 of the band, both for the inner and outer band.

Together this suggests that the Bi p orbitals are aligned tangentially to the

inner band above the Dirac point, and radially, below the Dirac point. The

orbital alignment is also continuous at the band bottom, evolving smoothly

from the inner to outer band. Again, this is so far assuming the simplest

possible scenario: clearly there are some deviations from the simple picture

that the spectral weight is distributed symmetrically at the top and bottom

or left and right of a contour, especially further away from the Dirac point.

This orbital polarisation is reminiscent of recent work performed on topo-

logical insulator surface states [103] (fig. 4.19). Linearly polarised light and

spectral weight analysis has been used to map the orbital part of the wave-

function in Bi2Se3, where the orbital texture was found to be radial (tangen-

tial) below (above) the Dirac point [103, 104] (fig. 4.19), consistent with our

findings for BiTeI. In Bi2Se3, the orbital polarisation was initially described

as potentially arising due to the topological physics [104]. Our work is the

first confirmation that this effect exists in a completely different material,

with none of the topological physics convoluting the interpretation. Here,
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a b c

FIGURE 4.19: Orbital polarisation and associated spin tex-
ture in Bi2Se3. a) Total angular momentum J = L + S,
driving a chiral spin texture switching through the Dirac
point. b) Isotropically distributed pz derived orbitals. These
drive a chiral spin texture S that switches at the Dirac point.
c) In-plane px,y orbitals showing tangential orbital texture
above and radial orbital texture below the Dirac point. These
should drive a spin texture that does not switch through the
Dirac point, showing a complex coupled spin-orbital texture

in Bi2Se3. Adapted from [103].

since BiTeI is a material with strong spin-orbit coupling and is a topologi-

cally trivial analogue to Bi2Se3, we demonstrate through our work that or-

bital polarisation is a generic consequence of the spin-orbit interaction alone.

Our experimental results presented so far have focussed primarily on the

Bi py orbital character, however the bands are derived from a mixture of bis-

muth and chalcogen orbitals, as well as each component of p orbitals, px,y,z .

In fact it was found that each orbital component, px,y,z , drives a particular

spin component through spin-orbit coupling. The momentum-dependent

orbital texture then drives a momentum-dependent spin texture resulting

in a coupled spin-orbital texture (which will be discussed in detail for this

material later). In Bi2Se3, this leads to a spin texture that not only switches

about the Dirac point, but additionally depending on the atomic species and

orbital character probed, i.e. an atomic orbital dependent spin texture (fig.

4.19). Later in this chapter, we will discuss the relevant work in detail, and

show through calculations and spin-ARPES how this arises in BiTeI.

For the off resonance kx-ky CESs in BiTeI, the spectral weight now has

peaks at the top and the bottom of the band (α = 0, π) for both the outer

and inner bands at the Fermi level, above the Dirac point (fig. 4.20). The

spectral weight is strongest for the inner band, which is consistent with the

dispersions in figure 4.16 (note again that the analyser slit is aligned along
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FIGURE 4.20: Constant energy surfaces measured using s-
polarised light, off resonance (hv = 30 eV), for conduction
band states in BiTeI. Measured along Γ̄− M̄ at binding ener-
gies corresponding to (i) the Fermi level, (ii) the Dirac point,

and (iii) close to the band bottom.

the ky direction). With the resonance condition relaxed, the spectral weight

contains contributions from the total wavefunction, potentially favouring

tellurium atomic orbitals by the arguments outlined previously. This would

suggest a complete anti-alignment of the tellurium orbital texture with the

bismuth orbital texture from our measurements.

In Bi2Se3, calculations suggest the orbital texture to be intricately linked

to a given layer within its quintuple layer unit cell (in turn corresponding to

a particular atomic character), suggesting a layer-entanglement of the wave-

function [105] (this and other convoluting factors will be discussed later this

chapter). Our conclusions from the off resonance kx-ky maps are the first

experimental evidence this layer-entangled coupled spin-orbital texture ex-

ists, supported by DFT calculations to follow. In addition, our work is proof

that this physics is purely a consequence of spin-orbit coupling and exists

beyond topological materials.

The procedure for quantifying the degree of orbital polarisation, and its

evolution through the Dirac point, is summarised in figure 4.21. The kx-ky

maps can be ‘unwrapped’ by taking a series of azimuthal line profiles and

plotting the spectral weight as a function of azimuth (fig. 4.21). The red

line in fig. 4.21a corresponds to α = 0, and positive α rotates clockwise.

The intensity and the position of the peaks can then be easily extracted. The

normalised intensity is shown as a function of azimuthal angle for a series of

binding energies over the full bandwidth of the inner band, from the Fermi
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FIGURE 4.21: Extracting the spectral weight around the in-
ner band on resonance. a) Example kx-ky map (atEF ) show-
ing direction of azimuthal profiles. b) Azimuthal profile for
the map in (a) plotted linearly. c) Normalised intensity ex-
tracted for the full bandwidth of the inner band as a function
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the Dirac point.

level (red), to the CBM (violet). Above (below) the Dirac point for the inner

band, the spectral weight is peaked at α = π/2 (α = 0, π) consistent with

our assignment of radially (tangentially) aligned orbitals.

We can extract an angular distribution factor (ADF), λ(ω), from the traces

as a function of binding energy defined in the following way:

λ(ω) =
Iα=π/2(ω)− Iα=0, π(ω)

Iα=π/2(ω) + Iα=0, π(ω)
(4.12)

where Iα(w) is the spectral weight at azimuthal angle α and energy ω. This

factor is the experimental equivalent of the ‘orbital polarisation ratio’ deter-

mined from the first principles calculations in Cao et al. [104]. In their OPR,

since this is obtained from first principles calculations, they are able to con-

sider individual azimuthal cuts at α = 0, π/2, π and the OPR is robust. Our

ADF however is obtained from experimental measurements and the spectral

weight variations are less smooth, and are sensitive to noise. To compensate

we integrate around the values α = 0, π/2, π with a width of ∼ 0.03π. The

obtained ADF was reasonably robust to greater integration windows. The
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FIGURE 4.22: The angular distribution factor λ(w) (eq. 4.12)
plotted for the inner band on and off resonance (for a kx-ky
measurement with the analyser slit aligned along Γ̄-K̄), and
on resonance (for a kx-ky measurement with the analyser
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aligned orbitals, negative indicates radially aligned orbitals.

results are shown in figure 4.22. The ADF is defined such that a positive

λ(ω) (top half of fig. 4.22) corresponds to tangentially aligned orbitals, and

a negative (bottom half of fig. 4.22) corresponds to radial alignment. The

results are consistent with our assignment for both Γ̄-K̄ and Γ̄-M̄ alignment

on resonance, with an ADF which goes through zero at the Dirac point and

is broadly negative at the band bottom. Qualitatively this agrees with what

is seen for the topological insulator surface states [104].

Calculating the ADF for the inner band off resonance the trend is com-

pletely reversed, but still switches precisely at the Dirac point. This is fur-

ther evidence that not only is the orbital polarisation tied to a particular

eigenstate of the system, switching precisely at the Dirac point, but that this

is also intricately linked to the atomic character, changing sign as we probe

off resonance.

4.3.3 Confirming the orbital texture:

DFT calculations

The spectral weight from ARPES measurements is clearly a reasonable

indicator of the orbital character but we are of course not directly looking



4.3. Probing the orbital texture 99

Azimuthal Angle, 

 

a

b

0 π

n o
i t

ce
jo

rp
 i

B
no

it
ce

jo
rp

 e
T

-0.2
-0.1
0.0
0.1
0.2

-0.4
-0.2
0.0
0.2
0.4

π/3 2π/3

ED

-140 meV 180 meV

In
-p

la
ne

 o
rb

ita
l p

ol
ar

isa
tio

n,

FIGURE 4.23: In-plane orbital polarisation ratio ζ(ω,k) of
the inner band extracted for (a) Bi and (b) Te atoms. Positive
(negative) ζ denotes greater density of py (px) orbital charac-
ter showing opposite alignment of orbitals between Bi and

Te (shown in the cartoons).

at initial state orbitals. We can compare our measurements to density func-

tional theory (DFT) calculations which represent the initial state atomic or-

bital character. DFT calculations have been performed by our collaborator

Choong H. Kim at Cornell University for this compound. Full details of the

calculations can be found in our paper underpinning this chapter [106]. The

calculations include the spin-orbit interaction and consider 60 atomic lay-

ers plus 20 Å of vacuum to model a Te-terminated surface to compare with

our measurements. We were provided with the magnitude of the complex

coefficients (atomic orbital weights) for all components of: p-orbital weight,

OAM and vectorial spin; projected onto the first six layers (two Te-Bi-I tri-

layers), as a function of energy and in-plane momentum.

To compare most directly to our measurements, we can calculate an in-

plane orbital polarisation ratio:

ζ(ω,k) =
Ipy(ω,k)− Ipx(ω,k)

Ipx(ω,k) + Ipy(ω,k)
(4.13)

where Ipx,y(ω,k) is the weight of a particular orbital component at energy

and in-plane momentum (ω,k). Positive (negative) values of ζ therefore
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denote a greater weight of py (px) orbital character. We compute this value

for the inner band for the Bi projections and Te projections. The results are

shown in figure 4.23 for values of α = 0-π in direct analogy to our extracted

spectral weight (fig. 4.21c). For the Bi projection, the OPR matches well with

our spectral weight extraction performed on resonance.

There is a clear peak in the spectral weight at the Fermi level for the

inner band at α = π/2 and this smoothly evolves to the band bottom, con-

firming our assignment of tangential (radial) above (below) the Dirac point

for bismuth, increasing in strength away from the Dirac point. This assign-

ment was the more robust from experiments, since we employed resonance

enhancements to gain additional sensitivity to bismuth atomic orbital char-

acter.

Intriguingly, the tellurium atomic orbital character projected from DFT

is exactly the opposite alignment to the bismuth character. This supports

our conclusion from the ADF extracted for the inner band off resonance

(fig. 4.22). This is additionally supported by the relative weight of in-plane

orbitals to out-of-plane orbitals for the tellurium layer, showing a greater
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weight of in-plane orbitals for the inner band (fig. 4.24b). For the bismuth

layer, there is a slight increase in pz orbital character towards the band bot-

tom but at the Fermi level there is an otherwise roughly equal admixture of

in- and out-of-plane (fig. 4.24b). This provides some explanation as to why

in our off resonance kx-ky map (fig. 4.20b), the inner band spectral weight

appears to reflect the tellurium orbital character, whereas the outer band

appears more bismuth-like.

4.4 Revealing the coupled spin-orbital texture

4.4.1 DFT calculations

The spin-orbit interaction in BiTeI is shown to result in a complex orbital

texture with contributions from the different atomic layers within the com-

pound, beyond what is expected from the Rashba Hamiltonian. We can in

fact show from our calculations and ARPES measurements that these orbital

textures drive a hierarchy of coupled spin-orbital textures tied to a particu-

lar layer and atomic orbital.

A typical Rashba spin-split state would exhibit an in-plane chiral spin

texture, counter propagating for the two Fermi surfaces as discussed. The

vectorial spin arising from the out-of-plane Bi pz orbitals shows predomi-

nantly the typical in-plane Rashba-like spin texture. This is reinforced to

some extent on the outer-band by the tellurium atomic character, which

shows the same Rashba-like spin texture but with a weak contribution to

the inner band (fig. 4.25c,d).

Considering the spin texture arising from the in-plane p-orbitals, there

are clearly significant departures from Rashba-like spin-splitting, with spin

textures that are not circulatory for the in-plane spin projection. The schemat-

ics (fig. 4.25d) depict the contributions from each Fermi surface to the in-

plane spin texture, accounting for the strength of the contribution of a par-

ticular in-plane orbital component at a given k. This is in analogy to the

schematic in figure 4.19. In BiTeI, the Bi px orbital weight on the outer band

is strongest at the left and right of the band (i.e. at k|| = (±kx, 0), or α = 0, π),
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as discussed from our ARPES measurements and DFT calculations. The

spin-projection from Bi px orbitals at these k-points is tangential and clock-

wise, i.e mostly±Sy for (∓kx, 0) (fig. 4.25a). Conversely, the top and bottom

of the outer band is more predominantly py orbital character, however this

also drives a clockwise vectorial spin (fig. 4.25b). This is summarised in

figure 4.25d, which for the Bi in-plane spin is then clockwise on the outer

band. For the inner band, we have shown that the orbital polarisation is

switched compared with the outer band. This means the Bi px orbital weight

on the inner band is strongest at the top and bottom (i.e. k|| = (±kx, 0)), and

more py orbital character dominated at the left and right of the inner band

(k|| = (0,±ky)). The corresponding spin texture driven by this tangential

alignment of in-plane orbitals is then also clockwise, meaning both the inner

and outer band have the same chirality spin texture projected from in-plane

orbitals (fig. 4.25d). Applying similar arguments we can obtain a schematic

for the inner and outer band for Bi and Te character, for the in-plane spin

arising from both in-plane and out-of-plane orbitals. The in-plane spin tex-

ture arising from px,y and pz orbitals is then fully summarised for clarity in

the respective schematics in figure 4.25d.

For the in-plane spin arising from the out-of-plane orbitals, both Bi and

Te pz orbitals drive a counter-propagating in-plane spin texture, typical for

the Rashba model. The in-plane spin arising from in-plane orbitals how-

ever, for both Bi and Te, is not counter-propagating, which seems to be a

departure from the typical Rashba model. The total spin in this system

will be a combination of all contributions from in-plane orbitals and out-

of-plane orbitals of each of the constituent atoms however, which overall

reduces to that expected from a conventional Rashba model. Our mea-

surements and calculations however reveal that this overall conventional

Rashba spin texture is a complex hierarchy of the spin texture driven by a

particular orbital component, for each of the present atomic species. Addi-

tionally, since these spin textures are driven by a particular orbital compo-

nent, these non-Rashba-like spin textures are a result purely of the orbital

polarisation within the system. Therefore the orbital polarisation vanishing
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at the Kramer’s degenerate point follows simply from the requirement that

the spin must be degenerate at this point, required by time-reversal symme-

try.

These in-plane coupled spin-orbital textures are well in accordance with

the calculated orbitally-projected spin textures in topological insulator sur-

face states [105, 107]. Similarly for the TI surface state (TSS), a chiral in-plane

spin texture is expected, but the spin-projection from the different orbital

components shows a departure from a simple tangential alignment to the

constant energy contours.

4.4.2 Spin-ARPES

This effect is actually measurable through polarisation-dependent spin-

ARPES. Several groups now have measured, for the TSS in Bi2Se3, the tan-

gential component of the in-plane spin to completely reverse when prob-

ing with s- vs p-polarised light [103, 108–110], attributed to the orbital-

selectivity of linearly-polarised light. This orbital-selective spin reversal was
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not seen for the Rashba-split surface state of Au(111) by Jozwiak et al., de-

spite it presumably being present, which they attribute to the reduced spin-

orbit strength of this material [108].

Significantly, in 2016, following our polarisation dependent study of BiTeI,

a polarisation-dependent spin-ARPES study by Maaß et al. measured the

spin texture of the Rashba split bands in BiTeI using a hv = 6 eV laser and

spin-filter [111]. They show that the measured spin indeed switches sign

when probing with s- vs p-polarised light from their spin-resolved kx-ky

maps [111]. They attribute this to the orbitally-resolved spin texture which

they confirm with calculations, in good agreement with the coupled-spin-

orbital texture picture presented in our work.

We have performed similar spin-ARPES measurements ourselves, this

time at a synchrotron where the photon energy can be changed in addition

to the polarisation. This allows us to tune the photon energy on resonance

and measure the spin polarisation with s- and p-polarised light. The results

are shown in figure 4.26. The magenta traces in the spin-polarisation EDCs

(fig. 4.26b) denote the in-plane component of the spin (along the analyser

slit direction) which at this point in the Brillouin zone should be non-zero for

a Rashba spin-split band. For s-polarised light, the in-plane polarisation is

broadly positive below the Dirac point and negative above the Dirac point,

producing the counter-propagating spin texture expected for the Rashba

model. The high noise above the Fermi level is caused by the normalisation

process since these are very small absolute values above the Fermi level. The

spin-polarisation when probing with p-polarised light is then qualitatively

opposite to that obtained with s-polarised light (fig. 4.26b,c). This is also ev-

ident from the true-spin EDCs (accounting for efficiency of spin-detection,

eq. 3.21). The highest binding energy peak when probing with p-polarised

light is opposite sign to the highest binding energy peak when probing with

s-polarised light (fig. 4.26c). This is can be explained by the orbital selectiv-

ity of the light polarisation coupling to the in-plane spin texture of the px,z

or py orbitals for p- or s-polarised light respectively, which is experimen-

tally verified by Maaß et al. [111]. Our measurements are not completely
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independently convincing, but taken with our the conventional ARPES, our

DFT and the spin-ARPES of Maaß et al., they provide at least some further

support that the orbital polarisation is the likely underlying principle.

We measure also a non-negligible out-of-plane component of the spin,

evident in the spin-polarisation measured with s-polarised light (fig. 4.26b)

and the true spin EDC (fig. 4.26d). When probing with p-polarised light

the out-of-plane spin-polarisation is mostly zero, however there is a small

peak when probing with s-polarised light. There is additionally a peak in

the true-spin, which is not degenerate for the red and blue traces, when

probing with s-polarised light. We can rule out this being an artefact of the

geometry of the experimental set up, and we know s-polarised light should

couple to py orbitals, which our DFT shows can drive an out-of-plane spin-

polarisation along this direction. This measurement provides experimental

evidence then for a small out-of-plane spin-canting, where the in-plane chi-

ral spin texture is modulated additionally by a non-zero Sz component. This

would need further experiments to fully map and understand this canting

however.

The canting of the spin out of the surface plane (a non-zero Sz compo-

nent) is known to exist, by calculations and by direct Sz measurements using
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spin-ARPES, in this compound [57, 111] and topological insulator surface

states [91, 107, 112, 113]. This is seen clearly in our calculations (fig. 4.25)

and has a similar dependence on the relative atomic orbital weight as with

the in-plane spin. The out-of-plane spin arises most strongly from the in-

plane atomic orbitals, evident from our Bi-projected spin texture. This is

supported for example by the lack of out-of-plane spin component arising

from the tellurium atoms on the outer band (fig. 4.25).

4.4.3 Circular dirchroism

While spin-ARPES provides a more direct probe of the spin-resolved

band structure, the process itself is inherently inefficient, particularly also

since the data typically obtained is 1D. This is because spin-ARPES requires

first angle and energy resolving the electrons, before then resolving the spin-

up and spin-down electrons. The process can be made significantly more ef-

ficient if any information even indirectly could be obtained from the 2D de-

tector. Efforts towards this have been made in understanding the difference

spectra between photoemission measurements obtained using circularly left

and circularly right polarised light. This is termed circular dichroism (CD).

Circularly polarised light carries an angular momentum, and it has been

shown to be sensitive to an unquenched orbital angular momentum (OAM)

within the electronic structure, a generic consequence of inversion symme-

try breaking [114, 115]. It is also shown that in materials with strong spin-

orbit interactions, the orbital angular momentum (OAM) tends to anti-align

itself with the spin-angular momentum (SAM), providing an indirect route

to probing the underlying spin texture. CD measurements often seem to

show modulations of the CD sign around a band that are consistent with

modulations in the calculated 3D spin texture [116, 117]. In particular, CD

has been shown to be an effective probe of the out-of-plane component of

OAM, which appears as a sign change in the CD between time reversal

points (equivalently, a 3-fold rotational symmetry around a band in kx-ky)

consistent with the calculated out-of-plane spin-canting [113, 116, 117]. At

lower binding energies, or equivalently smaller in-plane momentum away
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FIGURE 4.27: a) CD at EF measured on resonance (hv = 28
eV). b) Lz projection onto the Bi layer at E = 0.1 eV. c)
Lz projection onto the Bi layer for the band dispersion. Lz
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hv = 110 eV and (f) hv = 120 eV

from the Γ point, instead of a sin(3α) modulation of the intensity around the

band, a sin(α) modulation is expected [113, 116, 117].

Figure 4.27 details some of our CD measurements on BiTeI. There is a

clear 3-fold modulation of the CD signal (fig. 4.27a) consistent with pre-

vious results on TI surface states, explainable by the pronounced hexago-

nal warping. At this higher warping, the spin is canted out of the surface

plane and so the OAM, which is directly opposite in these strong spin-orbit

materials, also cants out of the surface plane, inducing additional modula-

tion of the CD signal (beyond sin(α)). Figure 4.27a was measured on reso-

nance (hv = 28 eV) and so this should be predominantly sensitive to the Bi

character. Our DFT calculations show a pronounced out-of-plane canting of

the vectorial spin at higher in-plane momentum (corresponding to a greater

hexagonal warping) for the spin-projection onto the Bi layer, as discussed.

This is additionally supported by projecting the Lz OAM component onto

the Bi layer for the bands at constant energy (fig. 4.27b) and projecting the

Bi Lz onto the band dispersion (fig. 4.27c). Here, the Lz component goes

to zero with decreasing in-plane momentum, indicating a fully in-plane L
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here (since as Lz is zero, L = {Lx, Ly, 0}). From our CD kx-ky measurement

at the Fermi level (fig. 4.27a) that shows significant warping at higher in-

plane momentum, the CD signal has a 3-fold modulation for the outer band.

This is again consistent with our assignment of a significant Lz component,

giving an out-of-plane canting of OAM. For the inner band, the additional

modulation of the CD signal has vanished, which is seen to correspond to a

vanishing Lz from our calculations, giving a predominantly in-plane OAM.

This changes significantly measuring off resonance. Figure 4.27d shows

the CD for an MDC along the ky direction at the Fermi level for a wide

range of photon energies. Most notably there are several changes in sign of

the dichroism for a given ky for example comparing: hv = 60, 100, 110, 120

eV. The corresponding Fermi surfaces for hv = 110, 120 eV are shown in fig-

ure 4.27e,f. Both Fermi surfaces show an approximately sin(α) modulation

to the CD signal, consistent with the Fermi momentum being smaller. A

small Fermi momentum then implies a less significant Lz at the Fermi level.

This could therefore be representative of the in-plane SAM (through anti-

alignment of a mostly in-plane OAM). Clearly this assignment has problems

since the in-plane spin should overall be Rashba-like (counter-propagating

on the two Fermi surfaces) but in figure 4.27e this would lead to spin tex-

tures propagating in the same direction on both bands. This is fully con-

sistent with measurements by Crepaldi et al., who measure a sign change

in the CD at hv ≈ 100 eV for the outer band in BiTeI, as well as multiple

sign changes for a range of photon energies for the BiTeX family [118] (note

only a single sign change in BiTeI for the outer band, still consistent with

our measurements).

The sign changing CD signal has been seen also in topological insulator

surface states [119, 120]. Scholz et al. state that since the initial states cannot

change with photon energy, the changing sign of the dichroism signal must

be a final state effect [120]. Through one-step calculations they suggest that

when a transition into a d-orbital final state is possible there is a significant

change in dichroism observed, given the p-like nature of the electronic states

for TSSs. This effect is also seen in one-step calculations on Au(111) [121],
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where the relative phase of different orbital character final states causes the

sign change.

Another explanation for similar photon energy dependent spectral weight

changes has been put forward by Zhu et al. for layered materials (in their

case Bi2Se3) [105]. They describe the total wavefunction of the topologi-

cal surface state in Bi2Se3 as a combination of layer dependent eigenstates

ΨTSS =
∑

i,σ αiψ
σ
i,k||

(as we have done for BiTeI), and factor out a complex

phase from the final state:

I ∝
∑
σ

∣∣∑
i

e−ikzzi〈eik||·r|| |A · p|αiψσi,k||〉
∣∣2 (4.14)

where zi is the depth of the ith layer. This phase factor e−ikzzi then depends

on the path length resulting from the layer difference. The photoemission

intensity variations can then be explained as interference effects from lay-

ers with different orbital textures [105], another possible cause for the sign

changing CD in BiTeI.

4.5 Conclusions

Coupled spin-orbital textures are now seen to be a generic consequence

of spin-orbit coupling in solids but determining the precise origin of all the

effects observed will still need considerable theoretical work. Notably, af-

ter publishing our work, in addition to the spin-resolved ARPES study on

BiTeI showing the orbitally-resolved spin texture [111], similar effects have

also now been shown in the surface alloy states Bi/Ag(111) and Bi/Cu(111)

[122]. Whereas in BiTeI, coupled spin-orbital textures are a result of the

global inversion symmetry breaking, the same effects being observed in the

surface alloys confirms this to arise even from the local inversion symmetry

breaking. This has been supported by calculations where it was shown that

orbital textures arise regardless whether the inversion symmetry breaking

is global or local [123, 124], which will be central to the discussion in the

following chapter and developing understanding of spin-orbit physics in

general.
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Chapter 5

Spin-valley locking in

2H-NbSe2

5.1 From Graphene to Transition-metal Dichalcogenides

In the previous chapter, global inversion symmetry breaking led to a gi-

ant bulk spin-splitting of the conduction bands. This was accompanied by a

previously unexpected momentum-space orbital polarisation. In this chap-

ter we will see how related symmetry considerations again lead to a hidden

kind of order: an unexpected spin-polarisation of the electronic structure

in a centrosymmetric crystal. In this case it arises from breaking local in-

version symmetry in the crystal structure of the transition metal dichalco-

genide class of materials. To understand how this all fits together, we will

first briefly discuss the familiar material graphene and consider symmetry

breaking here.

5.1.1 Graphene

There is a great deal of material available on the electronic structure of

graphene (e.g. [125–127]), the earliest tight binding models dating back to

1947 [128]. This introduction will follow the chapter by E. McCann in [125].

Graphene is a well known allotrope of carbon, basically equivalent to a sin-

gle layer of graphite. The atomic structure of graphene is a honeycomb

structure since there are two atoms in the primitive unit cell that can be

translated to the adjacent sites of the underlying hexagonal Bravais lattice
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by the lattice vectors a1 and a2:

a1 =

(
a

2
,

√
3a

2

)
,a2 =

(
a

2
,−
√

3a

2

)
(5.1)

where a = |a1,2| is the lattice constant (fig. 5.1a). These have the correspond-

ing reciprocal lattice vectors (fig. 5.1b):

b1 =

(
2π

a
,

2π√
3a

)
, b2 =

(
2π

a
,− 2π√

3a

)
. (5.2)

resulting in a hexagonal Brillouin zone.

a b

FIGURE 5.1: Real space and reciprocal space lattice of
graphene. Adapted from [125]

The Hamiltonian can be constructed in the generic way described in

chapter 2: diagonal terms describe the on-site energies, while off-diagonal

terms describe hopping between orbitals. The dominant contribution to

conduction comes from the pz orbitals so it is sufficient to consider only

these [128]. In the Slater-Koster scheme described in chapter 2 the interac-

tion between the pz orbitals extruding perpendicular to the graphene lat-

tice forms π bonds (so the bands formed from these are called the π bands

of graphene). If the orbitals are not strictly orthogonal the overlap should

be taken into account (shown in [125]) but we will neglect it for simplicity.

There is then a pz orbital from the atom on the A and the B sublattice (fig.

5.1) forming a 2× 2 Hamiltonian to describe the bonding (π) and antibond-

ing (π∗) states:

H =

 εA −tf(k)

−tf∗(k) εB

 (5.3)
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where t is the hopping parameter, εA,B is the on-site energy for the A or B

site, and f(k) contains the momentum dependence of the hopping arising

from the hopping vectors. There are three hopping vectors, considering only

nearest-neighbours, given by:

δ1 =

(
0,

a√
3

)
, δ2 =

(
a

2
,− a

2
√

3

)
, δ3 =

(
−a

2
,− a

2
√

3

)
(5.4)

where δ1,2,3 is the hopping vector from an A site to the nearest B site or vice

versa (fig. 5.1a). The momentum dependence of the hopping is then given

by:

f(k) =
∑
i

ei(k·δi) = eikya/
√

3 + 2e−ikya/2
√

3cos(kxa/2). (5.5)

The Hamiltonian can then be diagonalised, having solutions of the form:

E± =
εA + εB

2
±
√

(εA − εB)2 + 4t2|f(k)|2
2

(5.6)

where E−(E+) denotes the bonding π (antibonding π∗) band respectively.

In graphene the two sites forming the A and B sublattices both contain a

carbon atom. Applying the parity operator to the lattice, the lattice is trans-

formed such that an A site maps to a B site and vice versa. Since these are

both carbon atoms, the ideal honeycomb lattice of graphene possess inver-

sion symmetry. In this simple case, the on-site energies are equivalent to the

on-site energy of the carbon 2pz orbital εA = εB = εpz . This reduces the

eigenvalues to:

E± = εpz ± t|f(k)|. (5.7)

which gives a dispersion for the π bands as shown in figure 5.2. A con-

sequence of this dispersion is that for non-zero nearest-neighbour hopping

t, wherever the value of f(k) = 0 the two eigenvalues are exactly equiva-

lent (since then E± = εpz ). This enforces a degeneracy at exactly the points

where f(k) = 0, whereas for εA 6= εB in equation 5.6 there would always be

a splitting between the eigenvalues (a band gap) of (εA − εB)/2.

The degeneracy of the π bands occurs at the K points (the Brillouin zone
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a b

FIGURE 5.2: a) Electronic structure of the π-bands of
graphene. b) Near Fermi-level dispersion around the K
point showing the linear dispersion of the Dirac cone states.

Reproduced from [126]

corners) given by (b1 +b2)/3 = ξ(4π
3a , 0) or equivalent combinations of recip-

rocal lattice vectors (fig. 5.1b), where ξ = ±1. This parameter is called the

‘valley index’, denoting the fact that the important band extrema (valleys)

occur at these points. It has two values ξ = ±1, which in real space denotes

the localisation of the electron density being either on an A sublattice (e.g.

ξ = +1 ) or a B sublattice (e.g. ξ = −1). In momentum space, it distin-

guishes between the two inequivalent Brillouin zone corners that cannot be

translated between by a reciprocal lattice vector: K and -K (-K is often called

K’). This distinguishing property has significant consequences for physical

properties that are sensitive to the valley index.

The enforced degeneracies (points where f(k) = 0), occur for both val-

ues of the valley index so at both K and K’. This is only true exactly at the

Kξ points so we can evaluate this for a small momentum away from the Kξ

points p = ~k − ~Kξ, which gives the hopping function:

f(k) = eipya/
√

3~ + 2e−ipya/2
√

3~cos(
2πξ

3
+
pxa

2~
) (5.8)

≈ (1 +
ipya√

3~
) + 2(1− −ipya/2√

3~
)(−1

2
− ξ
√

3pxa

4~
) (5.9)

≈ −
√

3a

2~
(ξpx − ipy) (5.10)

after expansion and neglecting higher orders in momentum. This allows us
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to write down the low energy effective Hamiltonian for the states close to

the Kξ points as:

HKξ = v

 0 ξpx − ipy

ξpx + ipy 0

 (5.11)

where v =
√

3at/2~ is the particle velocity. This can be diagonalised to give

the following two eigenvalues and eigenstates:

E± = ±vp, ψ± =
1√
2

(
1

±ξeiξφ

)
eip·r/~. (5.12)

where p = (px, py) = p(cosφ, sinφ). The dispersion relation is then lin-

ear close to the K point, so the electronic states here are described as Dirac

fermions, with a velocity v. The two component wavefunction points to

there being a spin-like quantity. This is not related to the intrinsic spin of

the electrons but is a pseudospin that relates to the electron or hole density

being localised to either the A or B sublattices. Since this is a spin-like quan-

tity the effective Hamiltonian can be recast in terms of the Pauli matrices to

give:

H = v(ξσxpx + σypy), (5.13)

where σi refers to a Pauli matrix for the ith component of the pseudospin.

Graphene has remarkable properties, owing to the fact that close to the

Kξ points the states are described by a Dirac-like effective Hamiltonian, such

as an extraordinarily high mobility of carriers [126]. Its discovery drove

a rise in interest in 2D materials and how to control and utilise this Dirac

physics in the realm of condensed matter. However, the degeneracy at the

Kξ points make graphene less suitable for transistor-based device applica-

tions since the lack of band gap means that conduction cannot be easily

tuned on or off. Originally this was part of the renewed interest in studying

a related class of materials: transition-metal dichalcogenides.
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5.2 Electronic properties of TMDs

Transition metal dichalcogenides (TMDs) are another class of 2D mate-

rial, with the chemical composition MX2, where M is a transition metal, and

X is a chalcogen. A monolayer of a TMD is composed of hexagonal layers

(for each of the constituent atoms) with the metal atom layer situated be-

tween two chalcogen atom layers in the order X-M-X (fig. 5.3b-e). For some

TMDs, the monolayer crystal structure viewed along the c-axis (i.e. the in-

plane crystal structure) resembles a graphene-like honeycomb structure (fig.

5.3a), with an M atom on a different sublattice to the X atoms. This describes

the crystal structure we consider here.

In graphene, with the sublattice symmetry upheld, any nodes in f(k)

will provide a degeneracy in the band structure. In TMDs the sublattice

symmetry is broken (fig. 5.3a), so there will always be a finite energy differ-

ence between the two eigenvalues in equation 5.6. There is therefore a band

gap at the two valleys, which depends on the difference in on-site energies

between the A and B sublattices. In analogy to equation 5.13, the effective

Hamiltonian for TMDs near the K points (for now neglecting spin-orbit in-

teractions) can then be written as [129]:

H = at(ξσxpx + σypy) +
∆

2
σz (5.14)

where the a is the lattice parameter, and t is the hopping parameter, and

∆ is the energy gap opened from the sublattice symmetry breaking. The

additional term enforces the presence of a band gap by the means described

above.

In addition to breaking the sublattice symmetry, TMDs allow mixing of

a range of orbitals beyond the carbon 2s and 2p. The band structure close

to the Fermi level of TMDs is typically considered to contain contributions

from the transition metal d-orbitals as well as the p-orbitals of the chalco-

gens [130, 131]. The stacking along the c-axis has several varieties, the most

common being 1T, 2H and 3R (fig. 5.3). The number defines the number of
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a c

d

e

f

b
2H 1H 3R

1T

FIGURE 5.3: a) Honeycomb lattice of a monolayer TMD (of
the 2H or 3R variety) viewed along the c-axis. The stack-
ing along the c-axis is shown for the b) 2H, c) 1H, d) 1T and
e) 3R polymorphs. Green arrows represent the application
of the inversion (parity) operator. f) Low energy electronic
structure of a monolayer TMD near the zone corners. f) Re-

produced from [129]

MX2 layers within a unit cell and the letter defines the symmetry (tetrahe-

dral, hexagonal, or rhombohedral). The stacking order and symmetry also

dictate whether or not the crystal structure possess inversion symmetry. The

1T and 2H structures possess an inversion centre, while the 1H and 3R struc-

tures are inversion asymmetric (fig. 5.3). The green arrows in figure 5.3b-e

show the application of the inversion (parity) operator. In cases where the

atoms map back onto each other, this shows the presence of inversion sym-

metry.

5.2.1 Spin-valley locking in TMDs

Transition metals and chalcogens, unlike carbon, can have strong spin-

orbit coupling strengths which can further split bands, in the presence of

broken inversion symmetry. The direction of the spin-orbit field (Bso ∝

∇V ×k) is determined from the momentum of the electrons and the crystal
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field, which is forced to lie in-plane, from the mirror symmetry about the

transition metal plane. The effective Hamiltonian close to the K points, in-

cluding intra-atomic spin-orbit for a monolayer TMD, can then be written

as [129]:

H = at(ξσxpx + σypy) +
∆

2
σz − λξ

σz − 1

2
sz (5.15)

where the last term couples to the sz component of the electron’s spin, with

a spin-orbit strength λ. The first two terms are the same effective Hamilto-

nian as before (eq. 5.15) and this last term provides a spin-orbit splitting.

This applies an on-site energy shift to the bands, further splitting the bands

at the K points. It can also be seen from this term that the sign of the splitting

depends on both the valley index ξ and the out-of-plane spin component sz ,

i.e. the sign of the energy splitting for a given sz is governed by the valley

index ξ. This gives rise to a so called ‘spin-valley coupling’ in monolay-

ers of these materials shown schematically in figure 5.3. For example, the

upper valence band at a K point (positive ξ) possesses a spin-up sz , while

at the K’ point (negative ξ), the upper valence band possesses a spin-down

sz . Since this is a spin-orbit driven effect, and the spin-orbit Hamiltonian is

time-reversal symmetric, the observed spin-polarisation is itself also time-

reversal symmetric (the K and K’ points are also linked by the time reversal

symmetry operator). In principle, this effect exists only in monolayer TMDs

where inversion symmetry is explicitly broken (i.e. for the 1H or 1R poly-

morphs, fig. 5.3c).

Spin-valley coupling in these materials permits the study of the inter-

play between the pseudospin and spin degrees of freedom (for which there

is a recent review article from 2014 [132]). There was a surge in interest in

demonstrating control over spin-valley coupling in TMDs. In 2012, several

groups independently showed experimental evidence for the existence of

spin-valley coupling in semiconducting monolayer MoS2 through polarised

photoluminescence (PL) [133–135]. The experiment involved exciting exci-

tonic transitions in this material between the filled valence bands and un-

filled conduction bands, using circularly polarised light. The relaxation of
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FIGURE 5.4: Polarised photoluminescence measurements on
MoS2. a) Illustration of valley-selective circularly polarised
excitations. For an appropriate energy, through spin-valley
locking, valley selectivity corresponds to spin selectivity. b)
Measured circular polarisation upon exciting with circularly
polarised light. Non-zero measured circular luminescence
indicates spin-valley coupling. c) Measured circular lumi-
nescence on mono- and bilayer MoS2. Absence of lumines-
cence interpreted by preserved inversion symmetry (inset
shows this is not a yield dependent effect). a) Adapted from

[132]. b,c) Reproduced from [133]

the excited electron back into the valence band occurs through emission of

a photon. With strong spin-valley coupling close to the K points, the ex-

cited electron is most likely to relax through the same channel as it was

excited, since intervalley scattering requires a spin flip and (potentially) a

large in-plane momentum, which are energetically less favourable, leading

to robust valley coherence [132]. There is a strong photoluminescence yield

if the excitation energy coincides with an allowed excitonic transition. The

use of circularly polarised light for an appropriate energy (exciting from for

example the upper valence band only) allows excitation of predominantly

spin-up or spin-down electrons, due to the valley selection rules (fig. 5.4a).

Figure 5.4 demonstrates the results of Zeng et al. [133]. They excite with

an energy corresponding to excitonic transitions from the upper valence

band (UVB) to the appropriate exciton binding energy using circularly po-

larised light. In monolayers, from the calculations, these should have spin-

valley coupling ensuring that the upper valence band spin state is set by

the valley index (fig. 5.4a). The results show that the helicity of the ob-

served light is predominantly the same as the helicity of the excitation (fig.
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5.4b), expected from the spin-valley locking of the monolayers, given that

the monolayer 1H structure lacks inversion symmetry (fig. 5.3c). For the

bilayer samples, the 2H structure then restores inversion symmetry. This is

due to the two layers being 180o rotated around the c-axis from one another.

There is an inversion centre then between the two layers, whereby every

atom from one monolayer can be mapped exactly onto an equivalent atom

in the layer below by inverting the coordinate frame (fig. 5.3b). The po-

larisation of the measured PL signal is close to zero for the bilayer samples

which they attribute to the dual constraints of inversion and time reversal

symmetry, ensuring total spin-degeneracy of the electronic states. With no

spin-valley coupling the excited states can relax into either spin-state with

no luminescence helicity retention. The total photoluminescence yield is

similar for mono- and bilayer samples so this is not an effect caused by a

diminished total yield.

Spin-valley coupling has also been probed using spin-ARPES. Suzuki et

al. perform spin-ARPES on 3R-MoS2 [136]. The 1R monolayer structure is



5.2. Electronic properties of TMDs 121

identical to the 1H monolayer structure but subsequent layers are not ro-

tated with respect to each other and have a staggered stacking sequence

(fig. 5.3e). The 3R structure therefore breaks inversion symmetry while it is

preserved in the 2H structure (fig. 5.3e). They measure spin-resolved EDCs

at the K̄ point of 3R-MoS2 for the sz component of spin. By the symme-

try arguments, and by equation 5.15, this should be the component of spin

which couples to the valley degree of freedom (in monolayers). They mea-

sure a striking asymmetry in intensity of the red (spin-up) and blue (spin-

down) traces corresponding to the upper and lower valence bands for the

sz component (fig. 5.5a). There is also far less spin-polarisation for the in-

plane spin components (fig. 5.5), as expected from the theory (eq. 5.15).

This is direct experimental evidence for spin-valley locking in bulk com-

pounds. Additionally, Sugawara et al. probe monolayers of WSe2 on bilayer

graphene using spin-ARPES and see the expected strong out-of-plane spin-

polarisation [137]. This is entirely consistent with theoretical predictions at

this point.

5.2.2 From semiconducting to metallic TMDs

So far this discussion has introduced spin-valley coupling in semicon-

ducting compounds but the electronic properties of transition metal dichalco-

genides can vary significantly across the transition metal family. These prop-

erties are strongly affected by both the band filling and the point group sym-

metry of the transition metal ion, which governs the crystal field splitting

[130]. A simple interpretation of the crystal field splitting, bonding and band

filling is put forward by Wilson and Yoffe (1969) [138], which is summarised

here. A 1T crystal structure has D3d point group symmetry which puts

the transition metal ion in an octahedral (sometimes called trigonal anti-

prismatic) coordination. A 1H (or also 1R) crystal structure has D3h point

group symmetry which puts the transition metal ion in a trigonal prismatic

coordination (sometimes just called ‘trigonal’). Focussing on the trigonal co-

ordination, this splits the d orbital manifold into: [{dz2}, {dx2−y2,xy}, {dxz,yz}].

The d orbital manifold is energetically within the gap between bonding and
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e.g. Nb, Ta e.g. Mo, W

FIGURE 5.6: Idealised crystal field splitting of monolayer
transition metal dichalcogenides as a function of transition
metal group. This demonstrates schematically the band
levels after CFS but ignores SOC which promotes signifi-
cant orbital mixing and provides additional shifts in energy.

Adapted from [139]

antibonding M-X σ bonds and the Fermi level will lie somewhere in these

bands dependent on filling (fig. 5.6). In the trigonal prism, the bonding or-

bitals are the dxz and dyz orbitals, which offer the best distribution of charge

for bonding. There are then a total of six d states which can be filled from

the non-bonding bands.

From an ionic viewpoint, the oxidation states of the metal atom and the

chalcogen atoms are +4 and -2 respectively [139]. The metal ion in the com-

plex can then be considered as d0 for Group IV transition metals, where all

four of the valence electrons (e.g. 3d24s2 for Ti) fill the two bonding orbitals.

By extension then, this gives d1 for Group V (e.g. Nb, Ta), d2 for Group VI

(e.g. Mo, W) and so on, for a maximum of six electrons, completely filling

the available d states by Group X. From this it then follows that based on

the filling and the coordination, some TMDs will be semiconducting and

some will be metallic. Group V and VI TMDs most favourably form D3h

structures. This explains the semiconducting nature of WSe2 as the d2 elec-

trons fully filling the lowest dz2 band, whereas with one less electron, this

band is nominally half filled in NbSe2, a d1 TMD, making it metallic. This
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simple picture provides a neat interpretation of the electronic properties but

neglects deviations from ionicity through covalent bonding, as well as ig-

noring the significant band splitting and orbital mixing from spin-orbit cou-

pling. This also brings us on to the focus material of this chapter, 2H-NbSe2.

5.3 Electronic structure of NbSe2

5.3.1 Current understanding of collective phases

2H-NbSe2 (now to be referred to as NbSe2) is well-known to be a metallic

TMD with instabilities to collective phases present upon cooling. These are

a charge density wave phase (CDW) TCDW ≈ 33 K and a superconducting

phase (SC) TSC ≈ 7 K [140–143]. Even though the presence of these phases

has been known for decades, the precise origin of these phases is still de-

bated now. It crystallises into the space group P63/mmc, which has global

inversion symmetry, so these phases are currently thought to be derived

from a fully spin-degenerate Fermi surface. To discuss the current interpre-

tations and origins of these phases, it will first be necessary to introduce

briefly charge density waves in general, before describing how they arise in

NbSe2.

In the conventional interpretation, an electronic system is able to re-

duce its total energy by undergoing lattice distortions, which modulates the

charge density. These modulations of the electronic charge in real space

have a periodicity associated with the Fermi wavevector, kF , and so are de-

scribed as a charge density ‘wave’. The total energy of the system being low-

ered by a charge density wave (CDW) is well illustrated in 1D by a Peierls

distortion [144], which is understood as follows.

Consider a 1D chain of equally spaced atoms with an inter-atom sepa-

ration distance a, with a single electron per atom (fig. 5.7a). This produces

a 1D electronic band with Brillouin zone boundaries at k = ±π
a , which is

filled up to kF < ±π
a (fig. 5.7a). Displacing every other atom even a small

amount, such that the 1D chain can now be viewed as being constructed
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a b

FIGURE 5.7: Schematic of a Peierls instability in a 1D chain
causing a gap in the Fermi surface. a) 1D chain of atoms
equally spaced by a unit cell length a. With one electron
per atom the tight binding band shown is half filled up to
kF . b) Peierls instability displaces (for example) every sec-
ond atom such that the 1D chain can be viewed as a chain
of dimers with a doubled unit cell length. This modulation
leads reduces the system energy through energy gaps at the

Fermi wavevector as shown.

from pairs of atoms, effectively doubles both the unit cell size, and the num-

ber of atoms per unit cell (fig. 5.7b). In 1D this corresponds directly to a

halving of the Brillouin zone size and a doubling of the number of bands (or

‘backfolding’ the original bands, from copies of the original bands with the

new periodicity). This is achieved by an electronic gap forming at kF , since

electrons here can be moved with the least energy (fig. 5.7b). Since this only

requires a small perturbation (so called ‘weak coupling’) away from exactly

equally spaced atoms in the 1D chain, this system is highly susceptible to

modulating the charge density in this way, producing gaps in the electronic

spectrum.

Since this is defined as a response to the periodic modulation of atoms,

it can be described by the static susceptibility at a wavevector q [145]:

χ(q) =
∑
k

fk+q − fk
εk − εk+q

(5.16)

where fk is the Fermi function, and εk is the electronic dispersion. In 1D

for a free electron dispersion relation and at zero temperature (so f is a step
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function at the Fermi momentum) this straightforwardly gives:

χ1D ∝
1

q
ln

(
|q + 2kF |
|q − 2kF |

)
. (5.17)

This diverges at q = 2kF meaning the system is highly susceptible (un-

stable) to perturbations at this wavevector. This is analogous to the previ-

ous argument in which gaps in the electronic dispersion had to form at the

Fermi wavevector in response to any small perturbation such as grouping

the atoms in the chain.

In 1D this energy gap formation is also perfectly well understood from

so-called Fermi surface nesting. Any large parallel sections of the Fermi

surface that can be connected through scattering by a vector q are said to be

nested and will produce similar sharp, large peaks in the susceptibility. In

1D, the Fermi surface is just two points at k = ±kF and is perfectly nested,

giving the previously mentioned sharp divergence at q = 2kF . The nesting

vector q = 2kF can then open a gap for the entire Fermi surface through

modulation of the charge (a CDW) with a periodicity λCDW = 2π/q. For

a weak coupling driven instability in higher dimensions, strong nesting is

typically a requirement.

The divergence in the susceptibility is additionally understood as aris-

ing from a reduction in the ability of the conduction electrons to effectively

screen the ions of the lattice. This shows up in the phonon dispersion as

a singularity at these wavevectors: a Kohn anomaly, where ∂ω/∂q = ∞

[146]. The gradient of the phonon dispersion becoming much steeper for

the phonons which correspond to a lattice distortion is achieved by a reduc-

tion in their energy (a mode softening). In the case that the mode is softened

to zero energy (or equivalently frequency), a static lattice distortion sets in.

The signature of the CDW phase in NbSe2 is observed from transport

measurements as a ‘hump’ in the resistivity [141, 143], and additionally as a

sharp sign change in the hall coefficient [140], in both cases confirming the

conduction electrons play a role. From neutron diffraction data, the CDW
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FIGURE 5.8: a) Fermi surface of NbSe2 with CDW 3Q vec-
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wavevector was established to be qδ = (1 − δ)a∗/3 along the Γ̄-M̄ direc-

tion, where a∗/3 = (4π/
√

3a) and a is the in-plane lattice parameter [142,

147]. This has a 3Q structure (meaning three equivalent q vectors 120o ro-

tated). The non-zero δ is indicative of the incommensurate nature of the

CDW, which was shown to vary with temperature below TCDW . While for

TaSe2 this incommensurate phase eventually locks in upon further reduc-

ing temperature (δ = 0), this is not the case for NbSe2 [147]. Even down to

below the SC transition, δ continues to decrease.

Fermi surface nesting has previously been suggested to be at least partly

a possible origin for the CDW in NbSe2 [141, 148, 150–153] (though as we

will discuss, this is most likely not the driving force). The Fermi surface

is composed of an approximately hexagonal sheet and a further warped

hexagonal sheet centred on Γ̄, and two trigonally warped barrels centred on

the K̄ points (fig. 5.8). These bands are known to be quasi-two-dimensional

and predominantly derived from Nb 4d orbitals. An additional highly three

dimensional ’pancake’ Fermi surface is visible from the diffuse spectral weight

centred at the Γ̄ point. This highly three-dimensional pocket is predomi-

nantly derived from Se 4pz orbital character with additional mixing from

Nb 4dz2 orbitals.

The 2D Γ̄ sheets have been suggested to be well nested (due to their
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hexagonal nature having large parallel portions) [151], as well as the outer

K̄ barrels, where Kiss et al. measure the greatest CDW gaps [154]. However,

it was later pointed out after more high resolution FS measurements that the

q vector obtained from neutron diffraction does not fit well [148] (fig. 5.8a).

Another early theoretical proposal points to the saddle point at EB ≈ 50

meV to be the cause, due to the small velocity and large density of states

at this point [155] but this has not since been extended and deeper lying

states cannot easily lower the total energy of the system. Multiple studies

have suggested the inner K̄ barrel to have the appropriate size for nesting

[148, 152, 153]. This is also consistent with the most precise momentum-

space measurements of the CDW gap measured by ARPES at T ≈ 1 K [149]

(fig. 5.8b). In this ARPES study, the gap size was found to be a maximum

of ∆CDW = 6 meV at the points along the K̄-M̄-K̄′ direction of the inner K̄

barrel. Consistent with some previous assertions, the nesting vectors were

found to still not perfectly fit the inner K̄ sheet [148, 149, 152, 153], with the

kz-dispersion of this sheet given as a possible cause for the lack of strong

nesting [153]. From these experiments, Fermi surface nesting has been sug-

gested to provide a weak contribution at most, or no contribution at all, to

the formation of the CDW. The general consensus of these studies is that

electron-phonon coupling must play the more dominant role.

In phonon dispersions, the signatures of a CDW would be phonon mode

softening at the onset of the CDW, for phonons corresponding to the qCDW ,

accompanied by sharp peaks in the susceptibility at these vectors. Strong

electron-phonon interactions have been suggested by multiple studies as

the main driving factor of the CDW in NbSe2 [150, 156–159]. Through cal-

culations of Imχ(q), it has been shown that there are no sharply divergent

peaks which would correspond to strong nesting [157, 158] effectively ruling

this out as the main driving mechanism. Inelastic X-ray scattering measure-

ments of the phonon modes corresponding to the qCDW vector show that

there is a mode softening to zero frequency at the CDW onset temperature

[156, 159]. Sharp phonon mode softening is a signature simply of a struc-

tural transition. Crucially however, they measure a phonon mode softening



128 Chapter 5. Spin-valley locking in 2H-NbSe2

0 1q

0(
q)

a b

FIGURE 5.9: Phonon mode softening and susceptibility cal-
culation for NbSe2. a) Inelastic X-ray scattering measure-
ments showing the relevant phonon mode softening to zero
frequency for a broad range centred at qCDW . b) Static sus-
ceptibility measurements for orbital independent (red) and
orbital dependent (black) electron-phonon coupling show-
ing orbital dependent matrix elements are necessary to pro-
duce a peaked susceptibility. a) Reproduced from [156], b)

Reproduced from [157]

over a broad range of momentum transfer around the main qCDW vector

(fig. 5.9a). This confirms nesting to not be the driving factor, but instead a q-

dependent electron-phonon coupling driven CDW phase. Through ARPES

measurements it is already known that the electron-phonon coupling strength,

λel is highly k dependent [149]. Recently, Flicker and van Wezel show that

without including a momentum and orbital dependent coupling factor into

the susceptibility calculation, the static susceptibility is effectively flat, and

still only broadly peaked when calculating the susceptibility of just the inner

K band [157] (fig. 5.9b). Detailed knowledge of the underlying Fermi sur-

face including the orbital character is therefore essential to understanding

the driving mechanism for the CDW in NbSe2.

Further cooling drives the system into the superconducting phase where

additional gaps in the Fermi surface open. The superconducting gap has

been found to be both band dependent and anisotropic through recent ARPES

measurements [149, 154, 160] (fig. 5.8b). This is likely due to the relative

electron-phonon coupling strengths of the different bands. The CDW and

SC phases can coexist, however they compete for the Fermi surface [149].

The CDW gap was shown not to increase below the SC transition and multi-

ple additional SC gaps open up on the Γ̄ and K̄ barrels (fig. 5.8b). The SC gap



5.3. Electronic structure of NbSe2 129

TCDW

TC

kx (Å-1)

k y
(Å

-1
)

300200100

25 30 35 40

0 10 20 30

0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
a b

Temperature (K)

Max

Min

ρ
(m

Ω
-c

m
)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
hv = 106 eVhv = 100 eV

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

FIGURE 5.10: a) Resistivity as a function of temperature
for 2H-NbSe2 clearly showing transitions both to a charge-
density wave TCDW ≈ 33 K and a superconducting phase
TSC ≈ 7 K. b) Normal state (measured at T = 50 K) Fermi
surface (EF ± 20 meV) of NbSe2 measured by ARPES at

hv = 100 eV (LHS) and hv = 106 eV (RHS).

reaches a maximum of ∆SC ≈ 2.5 meV on the barrels around the K̄ points.

This momentum and band dependent gap size suggests that anisotropic

multiband superconductivity best describes NbSe2. This is supported by

techniques besides ARPES including magnetisation measurements [161], scan-

ning tunnelling microscopy [162], specific heat [163], thermal conductivity

[164], and magnetic penetration depth [165].

In these studies of the CDW and the SC phases, the spin-degree of free-

dom is not considered to play a significant role. This is because the 2H-

NbSe2 crystal structure preserves global inversion symmetry as discussed,

and by the dual constraints of this and time reversal symmetry, it should

have a fully spin-degenerate band structure. On the contrary, we demon-

strate through our ARPES and spin-ARPES studies that the normal state

Fermi surface has a rich spin texture completely unexpected from the con-

ventional symmetry constraints, which may provide an alternative route to

understanding the collective phases present in this material.
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5.3.2 Demonstrating spin-valley locking through ARPES and spin-

ARPES

Our samples of 2H-NbSe2 were grown at the University of Warwick by

Prof. G. Balakrishnan. We have characterised multiple batches of samples

by measuring their resistivity to low temperature (fig. 5.10a). Consistent

with previous measurements [143], we observe a characteristic hump at

TCDW ≈ 33 K and reduction to zero resistivity at TSC ≈ 7 K signifying

the onset of the charge density wave and superconducting phases respec-

tively. The batch of samples chosen for spin-ARPES investigation were se-

lected based on the strength of the transition to the CDW phase, i.e. the

samples with the greatest hump (fig. 5.10a). The vast majority of our mea-

surements will be taking place understanding the normal state Fermi sur-

face from which these phases arise. A characteristic measured Fermi sur-

face is shown in figure 5.10b with the two quasi-2D hexagonally warped

sheets centred around the Γ̄ points (mostly Nb 4d derived), the two quasi-

2D trigonally warped sheets around the K̄ points (mostly Nb 4d derived),

and the diffuse spectral weight centred at the Γ̄ points corresponding to the

3D pancake-like Fermi surface (mostly Se 4pz derived).

We show the Fermi surface measured at two photon energies (fig. 5.10b).

Since changing photon energy changes the value of kz we probe in ARPES,

some of the differences between the two kx-ky plots show up the 3D and

quasi-2D nature of the bands. The pancake-like Fermi surface has most

strong weight in the image measured at hv = 106 eV, while it is less visi-

ble in the hv = 100 eV measurement, indicating hv = 106 eV is closer to

the bulk Γ point in kz , where this Fermi surface is centred. The sharper

Γ̄-centred quasi-2D sheets are also seen to have some small kz dispersion

between these energies. The bands centred around K̄ points do not notice-

ably disperse between these two photon energies and so are likely more 2D

(this will be clarified with measurements later this chapter).

Figure 5.11a shows the normal state (T = 50 K) electronic structure along

the high symmetry directions M̄-Γ̄-K̄ as measured by ARPES at hv = 22 eV

at Diamond Light Source. At this much lower photon energy, the inelastic
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FIGURE 5.11: Spin-resolved bulk electronic structure show-
ing spin-polarised bands. a) Dispersion measured by
ARPES at hv = 22 eV along the M̄-Γ̄-K̄ directions. b-f)
Spin-ARPES EDCs measured at the marked momenta. Dif-
ferences between spin-up (blue) and spin-down (red) traces

reveal a strong spin-polarisation of these bands.

mean free path, λ, of an excited electron is now much shorter. Integrating

over a smaller real space distance gives us a correspondingly larger width

in kz . An approximation of a lorentzian peak with a width ∆kz given by the

inverse mean free path indicates that we are integrating over roughly two

thirds of the Brillouin zone. The bands making up the highly dispersive

pancake-like Fermi surface can therefore be seen as broad diffuse spectral

weight centred at Γ̄ for a wide range of binding energies corresponding to

the dispersion in E(kz). Along M̄-Γ̄ there are two sharper peaks in the spec-

tral weight which are seen to disperse to higher binding energies. These

make up the hole-like hexagonally warped Γ̄-centred Fermi surfaces.

Along the Γ̄-K̄ direction there are four Fermi crossings. The two closest

to Γ̄ compose the Γ̄-centred Fermi surface, while the final two make up the

trigonally warped hole-like bands. In the semiconducting TMDs of the same

symmetry group, the valence band maxima are typically located at the Γ̄-

point and at the K̄-point with a band minimum between these points along

this direction, and a Fermi level in the gap. By comparison, this metallic

compound has a Fermi level which has the valence band maxima at Γ̄ and

K̄ above the Fermi level, leaving just the bands which connect up the Γ̄ and

K̄ barrels below the Fermi surface. These Fermi crossings are reasonably

sharp indicating their quasi-2D nature. Our measurements are consistent

with previous measurements on these samples, including hints of a ’kink’

in the dispersions below a threshold energy close to the Fermi energy. This
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spectral feature has been well characterised in previous studies (e.g. [149,

166]) and is a hallmark of electron-phonon coupling present in this material,

and is not a focal point of the thesis.

Figures 5.11b-f show the spin-resolved normal state (T = 80 K) electronic

structure measured at hv = 22 eV by spin-ARPES at MAX Lab. Plotted

are the true-spin EDCs (eq. 3.21) which account for the underlying spin-

polarisation and the detection inefficiency. We have set up the experiment

such that we are measuring the component of spin perpendicular to the sur-

face plane, Sz . Shown are the spin-up (blue) and spin-down (red) EDCs. The

spin-resolved EDCs demonstrate a striking spin-polarisation of the bands

composing the Fermi surface, by the asymmetry of the spin-up and spin-

down traces. For example, figure 5.11d shows the spin-resolved EDC at

a momentum corresponding to the band bottom of these quasi-2D Nb 4d

bands (the saddle point). From this, there are two clear peaks in the true-

spin: a spin-up peak at EB ≈ 100 meV, and a spin-down peak at EB ≈ 230

meV. These correspond to the bands composing the outer and inner K̄ bar-

rels (at higher in-plane momentum) and disperse to form the Γ̄ barrels (at

lower in-plane momentum), as measured in the conventional ARPES spec-

tra (fig. 5.11a). The main difference is that these peaks are much broader in

our spin-ARPES measurements. The efficiency of spin-ARPES being much

lower than conventional ARPES requires that the resolution of the measure-

ments must be reduced in order to gain intensity and acquire measurements

in a reasonable time. This is often (but not exclusively) done by opening the

beamline exit slits, increasing the intensity of the light but sacrificing the en-

ergy resolution, which leads to energy broadening. There is an additional

large source of energy broadening determined by the size of the hole used to

channel electrons into the spin transfer lens section (in principle this can be

changed for other smaller holes as with analyser entrance slits). Gaussian

fits at the Fermi edge for a known measurement temperature, under typ-

ical measurement settings, indicate energy resolutions of ∆E ∼ 100 meV

(roughly an order of magnitude greater than typical measurement settings

for conventional ARPES).
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The spin-resolved EDC at this point (fig. 5.11d) shows that the inner

and outer K̄ barrels (as well as the inner and outer Γ̄ barrels) possess op-

posite spin-polarisation. This is seen additionally from tracing the peak

position from figure 5.11c-f. The spin-down trace disperses to lower bind-

ing energy and the spin-up trace is also seen to disperse up to the Fermi

level, where the spin-resolved spectral weight begins to decrease, consistent

with the peak centre dispersing further above the Fermi level. This follows

the dispersion measured with conventional ARPES. This shows that there

is a spin-polarisation of these bands even at the Fermi level, demonstrating

the existence of spin-polarised quasiparticles in this centrosymmetric crystal

structure.

In order for there to be any spin-polarisation (given the presence of up-

held time reversal symmetry) it was thought to be strictly required that in-

version symmetry is broken. The unit cell for the full crystal structure is

inversion symmetric as discussed, however the centre of inversion lies be-

tween the two layers. Inversion symmetry is preserved only by considering

both monolayers of NbSe2 together in the unit cell. Individually, each mono-

layer of the 2H-NbSe2 compound locally breaks inversion symmetry. In

NbSe2 this is due to the position of the Nb atom not being centred in the cage

of chalcogen atoms (e.g. recalling fig. 5.3). This therefore allows the spin-

orbit interaction to lift the spin-degeneracy locally within each layer [167,

168]. This is only the case if interlayer interactions are sufficiently weak,

meaning the wavefunction describing the states is predominantly localised

to one of the monolayers (fig. 5.12a). The existence of this spin-polarisation

is seemingly opposed to conventional considerations of inversion symme-

try and time reversal symmetry, and represents a significant paradigm shift

in the way spin-orbit coupling is considered to affect materials. Our work

is among the first works demonstrating that in addition to global inversion

symmetry, the local inversion symmetry can have a significant role in lifting

the spin-degeneracy of the band structure.

In work by Zeng et al. it was shown that without SOI the bands close to
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FIGURE 5.12: Layer-localised wavefunctions from a com-
bination of spin-orbit interactions and orbital character. a)
Electron density for a Bloch state |K, ↑〉 in bilayer WS2 is
strongly layer-localised. b) Orbitally-projected DFT calcu-
lations for WSe2, showing the bands at the K point to be
strongly in-plane d orbital derived, and bands at the Γ point
to be mostly out-of-plane p orbital derived. c) Spin-resolved
EDC at the K̄ point of WSe2 showing a strong out-of-plane
spin-polarisation. a) Reproduced from [169], b-c) repro-

duced from [168].

the K point are split into two bands by bilayer splitting and a three dimen-

sional manifold builds up by including additional layers [169]. However,

they show that including SOI provides a significant energy cost to hop-

ping between layers, reducing the electronic dimensionality. Spin-valley

coupling enforces that states in the same valence band (e.g. the upper va-

lence band (UVB)) at a given Kξ are oppositely spin-polarised between the

first (L1) and second layer (L2), i.e. EUVB(KL1
ξ , ↑) = EUVB(KL2

ξ , ↓). This

therefore requires a spin-flipping interaction to accompany any interlayer

hopping (or a large transfer of in-plane momentum, or a change in energy

corresponding to the spin-orbit splitting of the valence bands). This then

imposes a strongly 2D layer-localised nature on the bands at the K points,

where the valley index is well defined [169] (fig. 5.12a).

It was then shown by Zhang et al. that if the individual point group sym-

metry of a monolayer in a multilayer crystal structure breaks inversion sym-

metry, a real spin-polarisation can be supported by the electronic structure,

irrespective of a globally preserved inversion symmetric crystal structure

[167]. This layer-localised spin-polarisation was also independently demon-

strated to exist in 2H-WSe2, the semiconducting sister compound to NbSe2,

by our group [168]. In the Riley et al. study, it was shown through DFT
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calculations and ARPES measurements that the wavefunctions for states at

the K̄ points have a highly 2D nature mediated by the strong SOC, which

greatly suppresses interlayer hopping. This effect is compounded by their

in-plane orbital character close to the K̄ point, which is mostly dxy,x2−y2 as

a result of strong spin-orbit mixing (fig. 5.12b). These bands then support a

strong spin-polarisation measurable by spin-ARPES [168] (fig. 5.12c). Since

the crystal structure of NbSe2 is very similar to WSe2, we can expect an

equivalent orbital composition of the bands, but with a shifted Fermi level

corresponding to NbSe2 being a metal (fig. 5.6). It is worth noting that the

wavefunction is most strongly 2D exactly at the valence band maxima, at

the K̄ points in WSe2. While this is below the Fermi level in semiconducting

WSe2, it is well above the Fermi level in NbSe2. It was not initially clear

that spin-polarised states would still be obtained here. This work, however

clearly demonstrates that spin-polarisation persists up to the Fermi surface

and should have consequences for the 2H-TMD metals and their collective

phases. It additionally demonstrates the importance of interlayer hopping,

going beyond the argument of simply 2D vs 3D states, discussed below.

In both WSe2 and NbSe2, the underlying mechanism is the same: the

local inversion symmetry breaking of the monolayer, as opposed the global

inversion symmetry of the full unit cell due to the 180o rotation of the two

constituent monolayers. The 180o rotated monolayer layers have the effect

that the spin-orbit field is completely reversed between the two monolay-

ers of the unit cell. The spin-orbit field is given byBSO ∝ (∇V × k) so this

180o rotation corresponds to a sign change of ∇V . Since the sign of the spin-

polarisation is governed by the spin-orbit field, the spin-polarisation for the

two layers is also entirely opposite such that combining these two layers

restores full spin-degeneracy, and hence global inversion symmetry (fig.

5.3b,c). Since ARPES is a surface sensitive technique, we are able to mea-

sure predominantly the spin-polarisation localised to a single monolayer

(the top layer) of cleaved samples of bulk NbSe2. At this photon energy, the

inelastic mean free path of a photoemitted electron at EF is λ ≈ 5 Å, which

is significantly smaller than the c-axis lattice parameter c = 12.55 Å [147].
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FIGURE 5.13: Spin-resolved bulk electronic structure show-
ing spin-degeneracy. a) Dispersion measured by ARPES at
hv = 22 eV along the Γ̄-K̄ direction. b-d) Spin-ARPES EDCs
measured at the marked momenta. The spin-up (blue) and
spin-down (red) traces are completely degenerate at these

momenta.

From a Beer-Lambert law calculation for photoemission, close to normal

emission, the signal for the second monolayer is decreased from the first

by IL2 ≈ 0.3IL1. Since the second layer has an opposite spin-polarisation

and the intensity of this layer as measured from photoemission is not zero,

the total measured spin integrated over all layers probed will be reduced

from the absolute magnitude as projected onto a single layer. This can be

further complicated by photoelectron interlayer interference effects, as de-

scribed in the previous chapter [105]. These effects have been shown to re-

duce the measured spin-polarisation in WSe2 to almost zero, by tuning the

photon energy, becoming sensitive to a coherent superposition of the top

two monolayers equally [168]. Despite this potential interference effect, and

the inelastic mean free path, we are likely to be probing the spin texture of

predominantly the top monolayer. In our measurements for NbSe2, we are

clearly not averaging both layers or the spin-resolved EDCs in figure 5.11

would show exactly zero spin-polarisation.

The spin-polarisation is therefore strongly tied to the dimensionality and

orbital character of the underlying electronic states. This is well exemplified

in figure 5.13. Here, alongside the conventional ARPES electronic structure,

we show two spin-resolved EDCs. The Γ̄ point (fig. 5.13b) is a time reversal
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invariant momentum point (TRIM point) and so is necessarily doubly spin-

degenerate, as we observe from our measurements. At a k|| corresponding

to the chalcogen band, where there is no such TRIM double-degeneracy re-

quirement, the states are still fully spin-degenerate. The states here are Se

pz derived and so naturally have a greater interlayer hopping due to their

extended nature along the c-axis, and the smaller separation of Se atoms be-

tween layers, making the wavefunction more 3D. The extended nature of the

wavefunction (or equivalently, the greater interlayer hopping) then means

the electrons are influenced by the fully inversion symmetric unit cell. We

can then understand the lack of spin-polarisation measured in figure 5.13

as being attributed to the more 3D chalcogen pz bands (hybridised with

dz2). These are both spatially extended in the z direction and the wavefunc-

tion experiences the global inversion symmetry being upheld (in addition

to time reversal symmetry). The electrons therefore experience the exactly

opposite spin-orbit fields of both layers in the 2H structure. As briefly sug-

gested, suppression of interlayer hopping has intricacies beyond simply a

binary allowing or forbidding of the spin-polarisation, which we will return

to in detail at the end of the chapter.

As well as being locked to the layer index, the spin-polarisation is also

locked to valley index, ξ, which can be seen in figure 5.14. This shows

the electronic structure measured along K̄-M̄-K̄′ and corresponding spin-

polarisation. There are four Fermi crossings in the dispersion measurement

from conventional ARPES (fig. 5.14a), corresponding to the two trigonally

warped K̄ barrels, for both a K̄ and a K̄′ point. The measured spin polari-

sation at the Fermi level is shown in the spin-resolved MDC above, corre-

sponding to a k|| given by the solid black line (i.e. crossing all four bands).

The inner K̄ barrel is spin-down (red), and the outer K̄′ barrel is spin-up

(blue). This is exactly reversed for the K̄′ Fermi surfaces, where the inner

(outer) barrel is spin-up (spin-down) respectively. This preserves time re-

versal symmetry, as it should, given the spin-orbit Hamiltonian is time re-

versal symmetric. This is exactly equivalent to the requirement for the spin-

polarisation to be locked to the valley index, which again results directly
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FIGURE 5.14: Spin-valley locking at the Fermi surface of
NbSe2. a) Dispersion measured along K̄-M̄-K̄′ at hv = 22
eV, and spin-polarisation MDC at the Fermi level. b-d)
Spin-polarisation EDCs at the marked momenta showing a
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from the effective Hamiltonian (eq. 5.15).

We can support this spin-resolved MDC with a series of spin-resolved

EDCs at characteristic points: cutting the outer FS corresponding to a band

towards the K̄ point (fig. 5.14b); at a band towards the K̄′ point (fig. 5.14d);

and at the M̄ point (fig. 5.14c). In the spin-polarisation EDC corresponding

to bands towards the K̄ point (fig. 5.14b), there are two regions of non-

zero spin-polarisation. These correspond to the sharper outer band, and a

broader inner band, which are shown to have opposite spin-polarisation as

expected. This switches between bands centred around K̄ and K̄′ (fig. 5.14d)

supporting the results from the spin-resolved MDC. The M̄ point, another

TRIM, is then necessarily spin-degenerate as shown from the polarisation

EDC. This confirms that the spin-resolved MDC does indeed go through

zero spin-polarisation exactly at the M̄ point.

The requirement of the out-of-plane component of spin-polarisation to

be zero at the M̄ point has another consequence. States can have non-zero Sz

away from high symmetry points. This must obey time reversal symmetry
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2c ). In b,c) since Γ and M are TRIM points, and the
spin-polarisation must be both time reversal symmetric and
3-fold rotationally symmetric, the out-of-plane component
of spin is necessarily zero along Γ-M. (b) Reproduced from

[168]

(so must have an opposite sign between k and −k). This must addition-

ally be symmetric under 3-fold rotation about the c-axis, due to the 3-fold

rotational symmetry operator of the C3v point group (fig. 5.15a). The out-

of-plane component must therefore go to exactly zero for states at any k

anywhere along the Γ-M line in order for the out of plane component of the

spin to change sign. This is seen for example in calculations of the out-of-

plane component of spin-polarisation of the upper valence bands of WSe2

(fig. 5.15b). This is additionally seen in calculations for NbSe2 where the out-

of-plane spin-polarisation is projected onto the Fermi surface, away from an

out-of-plane momentum high symmetry point at kz = π
2c (fig. 5.15c). This

explains the spin degeneracy measured in figure 5.11b. This measurement

crosses the quasi-2D states forming the Γ̄ barrels. Being quasi-2D in nature

would suggest that suppressed interlayer hopping should lead to a measur-

able spin-polarisation as discussed. However, the measurement shows the

bands in figure 5.11b to be exactly spin-degenerate, which is supported by

calculations.
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ca CDW

SDWb

FIGURE 5.16: Examples of a 1D chain of atoms with one elec-
tron per atom. a) Displacing every other atom modulates the
charge density with a periodicity twice the original lattice
spacing, 2a. b) Imposing an anti-alignment of neighbouring
spins modulates the spin density by twice the original lat-
tice spacing, 2a. c) Dispersion relation for these instabilities

inducing a gap at kF . Adapted from [170].

5.3.3 Effect of spin-valley locking on the collective phases

We have established now that the normal state Fermi surface of NbSe2

hosts spin-valley locking. This could have significance then on the collective

phases which present upon cooling. The instabilities must be formed from

quasiparticles at these normal state Fermi surfaces. The largest gaps opened

by the CDW form on the inner K̄ barrels along the K̄-M̄-K̄′ directions [149]

where we have just established there to be a large spin-polarisation within

each monolayer of NbSe2. Also the CDW wavevector discussed previously

can be written as qCDW = {(1 − δ)a∗/3, 0, 0} i.e. there is no z component

[147]. Within each layer, interactions modulating the charge density corre-

sponding to a Fermi surface centred at a K or K’ valley will therefore be

interacting with spin-polarised quasi-particles, as opposed to previous as-

sumptions that these were spin-degenerate.

Periodic modulations of spin-polarised charge density are termed spin-

density waves (SDW), in analogy to charge density waves [171] (fig. 5.16).

Spin-density waves periodically modulate the spin density in space. For

example, equally spaced atoms forming a 1D chain with one electron per

atom that alternates spin-up then spin-down per atom can be described as a
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spin-density wave (fig. 5.16b). Considering the spin-polarised charge den-

sity, the spin-up charge density is periodic and has twice as long a period as

the atomic spacing (fig. 5.16b). The spin-down charge density is identical to

the spin-up charge density but out of phase by π (fig. 5.16b). Imposing this

spin configuration corresponds to a doubling of the period of translational

symmetry of the lattice, which then halves the Brillouin zone and reduces

the kinetic energy (through SDW formation), analogous to the Peierls distor-

tion described previously for CDWs (fig. 5.16c). From the figure (fig. 5.16) it

may appear that the SDW leads to a constant charge density, however this

is only the case in this special example and is often not the case. Another

difference noticeable from CDWs is that the SDW is not accompanied by a

lattice distortion, which is not the case for a CDW. Additionally, just as it

is possible to describe an SDW as two CDWs out of phase, it is conversely

possible to describe a CDW by two SDWs that are in phase with each other.

Given we have shown the existence of spin-polarised bands in NbSe2, the

origin of the CDW may be related to a spin-density wave order. The CDW

phase could be a combination of spin-density waves that are in phase with

each other between neighbouring layers of the unit cell, where the differ-

ent layer index imposes a sign change of the spin. Measurements show that

there is certainly a lattice distortion however so there certainly must be a

CDW component.

We were able to perform similar measurements as with our NbSe2 spin-

polarisation study on the related compound 2H-TaSe2. This has an identical

crystal structure to NbSe2 with a stronger spin-orbit strength from the heav-

ier Ta atoms. The underlying physics should therefore be well-comparable.

The CDW phase in TaSe2 has a much higher onset, with an incommensu-

rate CDW phase setting in at T ICCDW = 122 K, and a lock-in commensurate

CDW phase at TCCDW = 90 K [147]. We have been able to take prelimi-

nary spin-ARPES measurements of the out-of-plane component of spin in

the commensurate CDW phase in TaSe2 (at T ≈ 15 K) along the K̄-M̄-K̄′

direction (fig. 5.17). The dispersion along this direction looks qualitatively

similar to that of NbSe2 along this same direction (fig. 5.14a). The greater
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FIGURE 5.17: Spin-ARPES measurements showing spin-
polarisation in the CDW phase of TaSe2. a) Fermi surface of
TaSe2 measured with ARPES. Solid red lines mark the nor-
mal state Brillouin zone, and dashed lines marked the recon-
structed zone in the commensurate (3 × 3) CDW phase. b)
The CDW mediated lattice distortion in TaSe2, adapted from
[147]. Despite the complicated lattice distortion, the inver-
sion symmetry between the two layers is upheld. c) Disper-
sion measured along K̄-M̄-K̄′ at T ≈ 15 K for TaSe2. d) True-
spin EDC at the momentum marked by the arrow in (c),
for spin-up (blue) and spin-down (red) traces. e) The spin-
polarisation, obtained using a Sherman function of S = 0.3

at the APE beamline of Ellettra.

spin-orbit strength produces a greater splitting of these bands as compared

with NbSe2.

Another key difference between the two compounds is that with the

commensurate lock-in phase, there is a 3 × 3 reconstruction leading to a

backfolding of the normal state bands (fig. 5.17a). The solid red lines cor-

responds to the normal state Brillouin zone, whereas dashed red lines cor-

respond to the backfolded bands in the reconstructed Brillouin zone in the

CDW phase. In the commensurate CDW phase, each reconstructed zone

can be considered as containing a replica set of the normal state bands (in
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a similar sense to the schematic in figure 5.7). Where these bands cross,

this leads to a backfolding of the bands and CDW gaps open, lowering the

system energy. This has been observed and well studied in TaSe2 through

ARPES recently e.g.[172–174] with an extensive review on the CDW phase

found in [145]. The outer band along K̄-M̄-K̄′ has some additional spectral

weight with opposite velocity below where the CDW gap is formed (fig.

5.17c). This is broadly consistent with previous findings that these bands

are gapped from the CDW phase and experience some backfolding. This

shows we have measurements demonstrating the samples to be in the CDW

phase, consistent with previous studies which focussed on the details of this

phase (comprehensively covered in [145]).

Figures 5.17d,e show the measured true-spin EDCs and the spin-polarisation

(in direct comparison to the same measurements in the normal state of NbSe2

of figure 5.14). The true spin-resolved EDC has two clear peaks which are

strongly and oppositely spin-polarised: one at the Fermi level, and one

deeper in binding energy, corresponding to cutting both bands along this

direction (fig. 5.17d). This is also evident from the sign change in the polar-

isation (fig. 5.17e).

Both TaSe2 and NbSe2 undergo a structural distortion into the CDW

phase. In TaSe2 the greatest atomic displacement is the Ta atoms moving

δ ≈ 0.048 Å, compared with the in-plane lattice constant of a = 3.436 Å, so at

most a 1.4% atomic displacement [147]. The lattice distortion is depicted in

figure 5.17b, adapted from [147]. The lattice distortion still preserves global

inversion symmetry (visible from the exact 180o rotation between the two

layers) and still breaks local inversion symmetry within each monolayer

[147]. Our results then give direct evidence that the spin-polarisation car-

ries through into the CDW phase despite any structural distortion, making

this discovery directly relevant to the CDW phases across the TMD family.

The spin-polarised Fermi sea could also have implications for the su-

perconducting phase. The largest gaps in the superconducting state form

around the Γ̄ barrels. The magnitude of the gaps on these sheets has a

six-fold rotational symmetry, with the smallest gap sizes along the Γ̄-M̄
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direction [149] (fig. 5.8b), strikingly similar to the symmetry of the spin-

polarisation within a given layer. Given that time reversal symmetry is

upheld, it is still possible to create zero momentum pseudo-spin-singlet

Cooper pairs [175, 176]. Given the presence of strong spin-orbit coupling,

it was theoretically shown that the order parameter can be a mixture of

spin-singlet and spin-triplet pairing channels [177]. With inversion symme-

try broken (within each monolayer), the same-spin triplet pairing channels

are suppressed for zero momentum Cooper pairs (since there is no longer

a state with the same spin at negative momentum) but spin-singlet-spin-

triplet mixing can occur through the opposite spin channels [178]. This sym-

metry being globally preserved but locally broken within each layer could

feasibly impose restrictions on the form of the order parameter [179, 180].

With the changing sign of the spin-polarisation between the two layers, it

is possible that the order parameter could be characterised by a phase lock-

ing, giving an s± type order parameter, where the magnitude of the gap is

the same but the phase is opposite in certain parts of the BZ. This kind of

order has been studied in the context of multilayer non-centrosymmetric su-

perconductors, described as an odd-parity pair-density wave state, where a

staggered non-centrosymmetry and strong spin-orbit interactions are found

to be necessary [179, 181]. A layer-dependent phase would mean the gap

on the first and second layer would have opposite phase so the gap must

close leading to a node. Since bulk probes find no evidence for nodes, this

is not a likely scenario. It is possible that the phase could be band or valley

dependent, where the size of the gap for a given band is unchanged but the

phase between two valleys is opposite to form the s± state. After our NbSe2

study, recent theoretical efforts have turned to understanding the order pa-

rameter in light of the spin-valley-layer locking clearly present [180]. In

this work [180] they find a rich phase diagram of unconventional supercon-

ducting phases through a combination of inter- and intralayer spin-singlet

pairing and interlayer spin-triplet pairing interactions. The consensus to-

date is that the gap has different magnitudes on the different FS sheets and

is certainly not isotropic.
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Additionally, recent measurements on electrically gated monolayer MoS2

have reported an ‘Ising superconductivity’ [182, 183], as well as on mono-

layer films of NbSe2 [184]. MoS2 is nominally insulating but ionic gating

forms a 2DEG at the surface, where electrons are confined to the topmost

layers. As discussed, in monolayers of both MoS2 and NbSe2 the single lay-

ers of the two layer unit cells individually break inversion symmetry, lead-

ing to an out-of-plane spin-polarisation locked to the valley index. Since

these bands have a strongly ±σz spin vector aligned parallel to the spin-

orbit field, this can be described as an Ising-like spin (as in fig. 5.14e). This

is therefore referred to as ‘Ising superconductivity’ [182–184]. The proposed

Ising superconductivity in these materials was used to explain the resilience

of the superconducting state to an applied magnetic field. In both gated

MoS2 and monolayer NbSe2 samples, the magnetic field required to break

apart the Cooper pairs (the upper critical fieldHc2) was found to vary signif-

icantly with the direction of the applied field. For an applied magnetic field

aligned in the a-b plane of the sample, perpendicular to the spin-polarisation

axis, Hc2 was found to be far larger than the expected Pauli paramagnetic

limit.

Pauli pair breaking (or Pauli paramagnetic limiting) is one of the two

means by which magnetic fields can break apart Cooper pairs, the other

being orbital pair breaking [185]. In a simple picture, Pauli pair breaking

occurs by the change in energy gained by the alignment of a spin to the

applied field, breaking a Cooper pair formed of opposite spins by inducing

a Zeeman splitting. If the system can reduce its total energy by keeping the

electrons in Cooper pairs, it will, until it becomes energetically favourable

for the spins to align with the field. Orbital depairing breaks Cooper pairs

by forming circulating currents (vortices) perpendicular to the applied field.

These can be thought of as imposing a drift momentum q onto the electrons,

which then implies that time reversal symmetry is now broken for these

states since E(k + q, ↑) 6= E(−k + q, ↓).

It was additionally shown that the enhancement of H ||c2 decreases going

from monolayer to bulk, which was attributed to the loss of the spin-valley
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physics due to the restored inversion symmetry. However it is worth not-

ing, the magnitude of orbital depairing for thin films for an applied mag-

netic field parallel to the film (i.e. same geometry as the measured H
||
c2),

depends on d2 where d is the thickness, and no such dependence exists for

H⊥c2 [185]. Therefore even in conventional superconductors, thinning them

down will anyway reduce the effect of orbital depairing and enhance H ||c2

above the Pauli limit. The Pauli limit is however still surpassed by the large

Zeeman energy required to overcome the pinning of the spin vector to the

out-of-plane direction from alignment with the spin-orbit field. These stud-

ies have focussed on creating a 2D electronic environment where inversion

symmetry is explicitly broken but from our measurements we now know

that spin-valley locking persists even in the bulk.

5.3.4 Interplay between interlayer hopping and dimensionality

Moving away from the monolayer limit to bulk NbSe2, we find that in-

terlayer interactions play a significant role in determining the spin-polarisation.

Our collaborator, M.S. Bahramy at RIKEN, Japan, has performed fully rel-

ativistic DFT calculations which are downfolded using maximally localised

Wannier functions of Nb 4d and Se 4p orbitals to produce a tight binding

Hamiltonian. The resulting Fermi surface spin-polarisation is found to have

a rich dependence on the interlayer hopping, which will be discussed here.

Figure 5.18 shows the Fermi surface, with the Sz component of the spin

projected onto the first and second monolayers of NbSe2, displaying a pro-

nounced polarisation throughout the bulk band structure. The two layers

have exactly opposite magnitude spin-polarisation from our calculations

such that the total spin-polarisation of the two layers combined is zero.

This confirms that it is the local inversion symmetry breaking and oppo-

site spin-orbit fields from the 180o rotation of the two layers, which drives

the spin-polarisation discussed above. Our measurements are therefore able

to probe a non-equal combination of the layers such that we can resolve the

spin-polarisation attributed to a single layer.
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FIGURE 5.18: Out-of-plane component of the spin at the
Fermi surface of NbSe2 projected onto the first (a) and
second (b) layers, showing pronounced spin-polarisation
throughout the Brillouin zone. The spin-polarisation is ex-
actly opposite between the two layers consistent with this
being driven by local inversion symmetry breaking but up-

holding global inversion symmetry.

The local inversion symmetry breaking only induces spin-polarised bands

if the interlayer hopping is small enough that the wavefunction does not

have a great spatial extent over the fully inversion symmetric unit cell. Con-

versely, for large values of interlayer hopping, leading to a highly three-

dimensional dispersion or equivalently a wavefunction highly delocalised

over both layers of the unit cell, the spin-polarisation is completely sup-

pressed. This is seen from the calculations for the spin-projection onto the

highly 3D, pancake-like Fermi surface at the bulk Γ point. This has negli-

gible spin-polarisation in both layers, consistent with our assignment from

spin-ARPES (fig. 5.13).

In the opposite limit, if the interlayer hopping is almost negligible, we

would expect nearly 100% spin-polarisation. This is the case in monolayer

samples, where there are no layers to hop between in the perpendicular

direction, and so the spin-polarisation is correspondingly very strong [168].

This is also the case in bulk WSe2 where the bands at the K̄ points are highly

2D (from the in-plane d orbitals, fig. 5.12b), leading to spin-polarisations of

above 90% [168].

In our calculations, the strongest spin-polarisations are found at the Bril-

louin zone boundaries in out-of-plane momentum, kz = ±π/c (fig. 5.18). In

a tight binding picture, inter-unit cell hopping and intra-unit cell hopping
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between monolayers of NbSe2 have opposite phases. The interlayer hop-

ping is then completely cancelled by these equivalent hoppings with oppo-

site phase, at kz = ±π/c. With no interlayer hopping, this renders the Bril-

louin zone boundary effectively equivalent to an isolated monolayer. This

explains the spin-polarisations of > 90% that we observe from our calcu-

lations in this plane (kz = ±π/c). In addition, the horizontal (x-y) mirror

plane from the monolayer point group symmetry enforces that the spin-

polarisation is zero along the A-L direction. This follows from the combi-

nation of preserved time-reversal symmetry and 3-fold rotational symme-

try, as discussed before for the same direction at a different kz (fig. 5.15).

However, at the kz = ±π/c plane, the complete suppression of interlayer

hopping (rendering this plane equivalent to a monolayer) means the bands

naturally support a spin-polarisation through spin-orbit interactions. There-

fore, the required spin-degeneracy along the A-L direction is achieved by an

enforced crossing of the oppositely spin-polarised bands (fig. 5.18).

This can be seen directly by the dispersion along kz , and comparing the

band dispersions with, and without spin-orbit interactions (fig. 5.19). Along

the H-A-L plane (kz = ±π/c), without spin-orbit interactions, the complete

suppression of interlayer hopping forces a fourfold degeneracy of the bands.

That is: a spin-up and spin-down state, for the first and for second layer, for

a total of four states (fig. 5.19a). The two Fermi crossings along H-A and

the one Fermi crossing along A-L are therefore fourfold degenerate. Still

considering the case without spin-orbit interactions, away from the H-A-

L plane (kz = ±π/c), interlayer interactions open up a gap, as the bands

disperse in kz , which can be seen in figure 5.19a.

With the spin-orbit interaction included, the bands are allowed to fur-

ther hybridise. Along the A-H direction, the spin-orbit interaction opens a

gap, which lifts the fourfold degeneracy of the bands, even at kz = ±π/c. It

can then be seen that the opening of the gap from spin-orbit interactions cor-

responds to the bands becoming more two-dimensional, from the reduced

dispersion in kz (fig. 5.19b). This is evidence in this material for a spin-orbit

mediated suppression of interlayer hopping. This is the same mechanism
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FIGURE 5.19: a,b) Calculated dispersion along kz from DFT
calculations for the bands at the Fermi level with and with-
out the spin-orbit interaction (b and a respectively). c) Band
structure at the Fermi level (EF ± 15 meV) along kz as mea-
sured by ARPES. Measured between hv = 60−130 eV, using

p-polarised light.

as described previously for the bulk semiconducting compounds. That is to

say that spin-valley-layer locking suppresses interlayer hopping by the sign

change of the electrons spin between the first and second layer (L1 and L2

respectively) for a given valley, i.e. E(KL1
ξ , ↑) = E(KL2

ξ , ↓) [168, 169].

However, the fourfold degeneracy is not lifted by inclusion of spin-orbit

interactions along A-L. This direction is the equivalent of the Γ-M direction

(kz=0) at a different kz (fig. 5.19b). As discussed, time-reversal symmetry

plus the 3-fold rotational symmetry about the c-axis ensures that the Γ-M

(kz = 0) and also the A-L direction (kz = ±π/c) are fully spin-degenerate.

The added constraint that interlayer and intralayer hopping are effectively

cancelled at kz = ±π/c then also ensures that these states are fourfold-

degenerate along the A-L direction (since there is no gap opened by inter-

layer hopping, or by spin-orbit interactions). Together this implies that the
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dimensionality of the bands is intrinsically linked to the spin-orbit interac-

tion through the spin-valley-layer locking even in the bulk.

The quasi-2D nature of the bands is confirmed from our measurements

using photon energy dependent ARPES (fig. 5.19c). We see the same bands

crossing the Fermi level as in the DFT calculations. For the quasi-2D bands

composing the Γ̄ sheets (k|| ≈ 0.55 Å−1), we see some non-zero dispersion

along the kz direction, broadly consistent with the calculations. We see the

additional bands forming the K̄ barrels at k|| ≈ 0.8 Å−1, which seem to

have a negligible dispersion, to within the resolution that we measure here.

The diffuse patch of spectral weight at Γ̄ that is localised in kz clearly cor-

responds to the pancake-like Fermi surface. The dimensionality, being rein-

forced by the spin-orbit suppression, is then intricately linked to the spin-

polarisation.

The link between dimensionality and spin-polarisation can also be seen

from the calculated Fermi surface along the K-M-K direction (fig. 5.18). The

inner band around the K point along the Γ-K-H-A direction is highly 2D

but along the K-M-K direction this band has a more pronounced disper-

sion along kz . This is evident both from the calculated Fermi surface, as

well as in the dispersion measured using ARPES in figure 5.14a. That is

to say, in the dispersion measured using ARPES in figure 5.14a, the outer

bands are broader from their larger kz dispersion compared with the inner

band, which is sharper from the quasi-two-dimensionality. The compar-

atively larger kz dispersion then leads to a correspondingly smaller spin-

polarisation as seen in the calculated Fermi surface (fig. 5.18).

In bulk NbSe2, the increased interlayer hopping giving rise to quasi-2D

bands has another significant effect on the spin-polarisation as compared

with the monolayer case. In the monolayer limit, the electronic momentum

is entirely in-plane. This causes the spin-orbit field (Bso ∝ ∇V × k) to lie

entirely out of the surface plane, producing out-of-plane spin-polarisations

of nearly 100%. In the bulk, finite interlayer interactions allow for an out-

of-plane momentum, which can act to cant the spin-orbit field. This can

lead to a non-negligible in-plane spin-polarisation, if the spin-orbit field is
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FIGURE 5.20: a) Sx and b) Sy components of the spin at
the Fermi surface of NbSe2 projected onto the first layer,
showing that a non-negligible in-plane spin-polarisation can
arise under certain conditions. The Γ barrels develop a dis-
parate radial spin texture which is strongest along the Γ-
K direction. c) Schematic of the in-plane spin-polarisation
for kz = ±π/2c, where the spin-polarisation is shown to be

greatest.

no longer fully along the z direction. This can be achieved when the total

momentum vector is no longer entirely in-plane.

The resulting in-plane Fermi surface spin texture is shown for the Sx

and Sy components of the spin (fig. 5.20a,b). At the K points in NbSe2,

the in-plane momentum is k|| ∼ 1.2 Å−1. The maximum possible out-of-

plane momentum available in the reduced zone scheme is kz = ±π/c ∼ 0.25

Å−1, so the momentum vector is predominantly in-plane here. The in-plane

spin-polarisation projected onto the K barrels in our calculations, is almost

negligible consistent with the interpretation of the total momentum vector

of the spin-orbit field governing the strength of the spin-polarisation (fig.

5.20). Additionally, the in-plane spin-polarisation vanishes completely at

kz = 0 and kz = ±π/c. In both these cases, the total momentum vector

can be viewed as being entirely in-plane (in the case of the Brillouin zone

boundary, this is due to the opposite phase in a tight binding formalism),

therefore providing an entirely out-of-plane spin-orbit field.

Considering now the Γ barrels, these are also quasi-2D and also have a

Fermi surface spanning the full Brillouin zone in kz , but at a comparatively

smaller in-plane momentum. These are therefore present where the total

momentum vector k has a similar magnitude of in-plane to out-of-plane

momentum, k|| to kz . This cants the total momentum vector, k, towards

the out-of-plane direction, which drives an in-plane spin-polarisation. Our



152 Chapter 5. Spin-valley locking in 2H-NbSe2

calculations show that these Γ barrels then host a significant in-plane spin-

polarisation, reaching ∼ 25% (fig. 5.20). This spin texture is predominantly

radial, with an opposite sign for the two sheets, and strongly peaked along

the Γ-K directions. This is seen most clearly in the schematic of the in-plane

spin-vector for kz = π/2c (fig. 5.20c). While this demonstrates the existence

of this theoretically, we will need to perform additional measurements to

confirm and comprehensively map this in-plane spin texture.

5.4 Conclusions

Nonetheless, though this combined spin-ARPES and DFT study of bulk

2H-NbSe2 we have demonstrated that a pronounced spin-valley-layer lock-

ing exists even in the bulk globally symmetric compound. This supports

and extends our previous establishment of spin-valley locking in the related

bulk compound, 2H-WSe2 [168]. In accordance with predictions [167], this

is shown then to be a generic consequence of the local inversion symmetry

breaking within the globally inversion symmetric crystal structure. Spin-

ARPES measurements exploiting selection rules of circularly polarised light

have recently demonstrated spin-valley locking in bulk MoS2 [186]. This has

also been observed across a range of mono- and tri-layer MoSe2 and WSe2

using spin-ARPES [187]. Interestingly, they are unable to see the expected

spin-polarisation in the bi-layer samples in this study, but this could be an

experimental artefact. Domains that are multiples of 60o rotated are energet-

ically equivalent in growth but would superpose the electronic structure of a

K̄ and a K̄′ point so measurements integrating over equal parts of these do-

mains in real space would lead to a measurement of zero spin-polarisation.

Several other effects could act to reduce the polarisation such as interference

effects [105, 168].

Beyond providing additional evidence for spin-valley locking, our work

demonstrates that this is not an effect limited to the semiconducting fam-

ilies, where the band maxima are well below the Fermi level. This is an



5.4. Conclusions 153

effect that persists in the collective phases and can potentially have a sig-

nificant effect which will need considerable theoretical attention [180]. The

quasi-2D nature of this material opens up the potential to explore the sur-

rounding phase diagram through intercalation and doping: controlling the

crystal structure and electronic structure to produce tailored exotic phases

and explore the interplay of the spin-orbit interaction with dimensionality

and symmetry breaking.
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Chapter 6

Conclusions and outlook

This concludes the experimental work on the electronic structure of BiTeI

and 2H-NbSe2. Using spin- and angle-resolved photoemission spectroscopy,

supported by density functional theory calculations provided by our collab-

orators, the underlying spin-resolved electronic structure of these materials

was investigated.

Presented in this thesis is original work demonstrating a momentum-

space ordering of the atomic orbitals in the bulk Rashba semiconductor

BiTeI. This kind of momentum-space orbital polarisation was suggested in

similar materials to be a hallmark of the topological surface states. However,

our work on this related but topologically trivial material shows it to be a

generic consequence of strong spin-orbit coupling. Revealing the orbital

polarisation was achieved through exploiting one-electron matrix element

spectral weight suppression through light polarisation dependent ARPES,

to gain sensitivity to a particular component of the atomic orbitals. We

also demonstrated how we were able to additionally gain atomic sensitiv-

ity through resonant enhancements from shallow core levels. Using both

light polarisation and resonant enhancements in spin-ARPES we showed

how the disparate atomic orbital textures of the bulk Rashba split bands

drove characteristic spin textures. This is supported by our collaborators’

density function theory calculations projecting the momentum dependence

of the spin-polarisation arising from a particular atomic orbital onto the in-

dividual atomic layers. Together these findings demonstrate a previously

undiscovered hierarchy of atomic species dependent coupled spin-orbital

textures in this material, as a consequence simply of spin-orbit interactions.
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This has implications in general for materials with strong spin-orbit inter-

actions, suggesting a route to controlling spin-splitting through orbital ma-

nipulation.

The main focus of the chapter was the published result discussed above

but throughout this chapter many findings were discussed that suggest op-

portunities for future work. Firstly, multiple reports have suggested the

band dispersion in BiTeI to be non-parabolic (while others have ignored it

completely). We demonstrate that this is certainly the case and suggest pos-

sible explanations. This however will need some theoretical consideration

and some further analysis to fully uncover. Our work also provides evi-

dence for the quantum well nature of the state observed in VUV-ARPES

in BiTeI, which has been a matter of dispute. The photon energy depen-

dence we show clearly has negligible kz dispersion of all subbands over a

full Brillouin zone. We show results from circular dichroism on BiTeI which

we compare with our projections of the orbital angular momentum. This is

in accordance with similar findings in topological insulator surface states,

however, whether there is any link between circular dichroism and spin-

angular momentum is still debatable. Finally, our work, and the indepen-

dent work of Reinert’s group, have begun to disentangle the spin-orbital

texture through experimental measurements of BiTeI. Understanding how

this can be controlled and manipulated (e.g. through chemical substitution

or straining) in this material as well as potential candidate spintronic mate-

rials will no doubt be a fruitful area of research in the future.

Additionally presented was our original work on the spin-valley-layer

locking in NbSe2. Here we showed this to be a result of the local inversion

symmetry breaking (in contrast to the case for BiTeI). The spin-polarisation

was found to persist up to the Fermi surface of NbSe2. We also report

measurements on the sister compound TaSe2 demonstrating that the spin-

polarisation is still present in the charge density wave phase. This find-

ing is therefore directly relevant to at least the charge density wave phase,

and potentially other collective phases. Extending the idea of 2D versus 3D

wavefunctions from our earlier work on WSe2, our results on NbSe2 clearly
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highlight the importance of a continuous range of interlayer hopping. From

our collaborators’ density theory calculations, we illustrate that through the

wavevector dependence of the spin-orbit field, the underlying bands can

even develop an in-plane spin-polarisation. There are then a selection of

parameters that can be tuned to drive this and related materials into nearby

exotic phases.

This is the major question which calls for ongoing research, both theo-

retical and experimental. In the thesis we suggest and review some of the

potential effects that the spin-polarised Fermi sea can have on the collec-

tive phases. Clearly however, detailed theoretical mechanisms and calcu-

lations are beyond the scope of the thesis. We began to measure the spin-

polarisation in the CDW phase of TaSe2, showing this to be experimentally

accessible, however this will require comprehensive further study. Addi-

tionally, the details of the crystal structure are themselves not specifically

important: rather it is the underlying symmetries. This suggests the results

presented to be relevant to a wide range of materials that possess staggered

non-centrosymmetry. In addition, while we show from theory the existence

of an in-plane spin-polarisation, this was experimentally difficult to access.

Mapping this spin texture and its dependence on the interlayer interactions

will provide one route for ongoing work. Finally, given that the results pre-

sented depend so sensitively on interlayer hopping, this calls for experi-

ments which can tune and control this parameter, and exploring its effect on

the spin-polarisation. This can be achieved by mechanical strain or stress,

as well as intercalation to offset the layers, chemical substitution, or simply

by research across the range of TMDs.

Overall the work presented here opens up a realm of possibilities in

these materials. In fact, given the importance of the underlying crystal sym-

metries and the orbital character governing the relative interlayer hopping

strengths, there are a wide range of applicabilities providing a fruitful and

lasting area of condensed matter research.
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