279 research outputs found

    Discourse on order vs. disorder

    Get PDF
    The second law of thermodynamics is on one hand understood to account for irrevocable flow of energy from the top down, on the other hand it is seen to imply irreversible increase of disorder. This tension between the 2 stances is resolved in favor of the free energy consumption when entropy is derived from the statistical mechanics of open systems. The change in entropy is shown to map directly to the decrease in free energy without any connotation attached to disorder. Increase of disorder, just as order, is found to be merely a consequence of free energy consumption. The erroneous association of disorder with entropy stems from an unwarranted assumption that a system could undergo changes of state without concomitant dissipation, i.e., a change in energy.Peer reviewe

    Tiltrotor CFD part II: aerodynamic optimisation of tiltrotor blades

    Get PDF
    This paper presents aerodynamic optimisation of tiltrotor blades with high-fidelity computational fluid dynamics. The employed optimisation framework is based on a quasi-Newton method, and the required high-fidelity flow gradients were computed using a discrete adjoint solver. Single-point optimisations were first performed, to highlight the contrasting requirements of the helicopter and aeroplane flight regimes. It is then shown how a trade-off blade design can be obtained using a multi-point optimisation strategy. The parametrisation of the blade shape allowed to modify the twist and chord distributions, and to introduce a swept tip. The work shows how these main blade shape parameters influence the optimal performance of the tiltrotor in helicopter and aeroplane modes, and how a compromise blade shape can increase the overall tiltrotor performance. Moreover, in all the presented cases, the accuracy of the adjoint gradients resulted in a small number of flow evaluations for finding the optimal solution, thus indicating gradient-based optimisation as a viable tool for modern tiltrotor design

    The rise of the citizen author: Writing within social media

    Get PDF
    The concept of the citizen author is defined and explored within the publishing industry. In order to understand what positions the citizen author currently, and potentially could, hold it begins with a historical view of their rise, including concepts of their eighteenth century antecedents. But the focus of this research is on their growth alongside that of social media platforms. This allows for drawing out relationships between genre fiction, publishers, and the citizen author, which provides a more full understanding of the power dynamics involved when publishers, social media, and the citizen authors mix in the current industry climate.N/

    What Are the Roles and Responsibilities of the Media in Disseminating Health Information?

    Get PDF
    Background to the debate: In December 2004 three news stories in the popular press suggested that the side effects of single-dose nevirapine, which has been proven to prevent mother-to-child transmission of HIV, had been covered up. Many HIV experts believed that the stories were unwarranted and that they would undermine use of the drug, leading to a rise in neonatal HIV infection. The controversy surrounding these stories prompted the PLoS Medicine editors to ask health journalists, and others with an interest in media reporting of health, to share their views on the roles and responsibilities of the media in disseminating health information

    Breather trapping and breather transmission in a DNA model with an interface

    Get PDF
    We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian of the Peyrard--Bishop model is augmented with a term that includes the dipole--dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped in a region around the interface collecting vibrational energy. For an energy larger than the critical value, the breather is transmitted and continues travelling along the double strand with lower velocity. Reflection phenomena never occur. The same study has been carried out when a single dipole is oriented in opposite direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a mechanism for the trapping of energy. Finally, the simulations show that, under favorable conditions, several launched moving breathers can be trapped successively at the interface region producing an accumulation of vibrational energy. Moreover, an additional colliding moving breather can produce a saturation of energy and a moving breather with all the accumulated energy is transmitted to the chain.Comment: 15 pages, 11 figure

    Radiolysis of water ice in the outer solar system: Sputtering and trapping of radiation products

    Get PDF
    We performed quantitative laboratory radiolysis experiments on cubic water ice between 40 and 120 K, with 200 keV protons. We measured sputtering of atoms and molecules and the trapping of radiolytic molecular species. The experiments were done at fluences corresponding to exposure of the surface of the Jovian icy satellites to their radiation environment up to thousands of years. During irradiation, O2 molecules are ejected from the ice at a rate that grows roughly exponentially with temperature; this behavior is the main reason for the temperature dependence of the total sputtering yield. O2 trapped in the ice is thermally released from the ice upon warming; the desorbed flux starts at the irradiation temperature and increases strongly above 120 K. Several peaks in the desorption spectrum, which depend on irradiation temperature, point to a complex distribution of trapping sites in the ice matrix. The yield of O2 produced by the 200 keV protons and trapped in the ice is more than 2 orders of magnitude smaller than used in recent models of Ganymede. We also found small amounts of trapped H2O2 that desorb readily above 160 K.Fil: Bahr, D.A.. University of Virginia; Estados UnidosFil: Famá, M.. University of Virginia; Estados UnidosFil: Vidal, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Baragiola, Raul Antonio. University of Virginia; Estados Unido

    Fungal entomopathogens: new insights on their ecology

    Get PDF
    An important mechanism for insect pest control should be the use of fungal entomopathogens. Even though these organisms have been studied for more than 100 y, their effective use in the field remains elusive. Recently, however, it has been discovered that many of these entomopathogenic fungi play additional roles in nature. They are endophytes, antagonists of plant pathogens, associates with the rhizosphere, and possibly even plant growth promoting agents. These findings indicate that the ecological role of these fungi in the environment is not fully understood and limits our ability to employ them successfully for pest management. In this paper, we review the recently discovered roles played by many entomopathogenic fungi and propose new research strategies focused on alternate uses for these fungi. It seems likely that these agents can be used in multiple roles in protecting plants from pests and diseases and at the same time promoting plant growth

    Dioxin Induces Genomic Instability in Mouse Embryonic Fibroblasts

    Get PDF
    Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI), i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Mouse embryonic fibroblasts (C3H10T1/2) were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN) and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days). For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay), was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response
    corecore