611 research outputs found

    Non-equilibrium initial conditions from pQCD for RHIC and LHC

    Get PDF
    We calculate the initial non-equilibrium conditions from perturbative QCD (pQCD) within Glauber multiple scattering theory for s=200\sqrt s =200 AGeV and s=5.5\sqrt s =5.5 ATeV. At the soon available collider energies one will particularly test the small xx region of the parton distributions entering the cross sections. Therefore shadowing effects, previously more or less unimportant, will lead to new effects on variables such as particle multiplicities dN/dydN/dy, transverse energy production dEˉT/dyd\bar{E}_T/dy, and the initial temperature TiT_i. In this paper we will have a closer look on the effects of shadowing by employing different parametrizations for the shadowing effect for valence quarks, sea quarks and gluons. Since the cross sections at midrapidity are dominated by processes involving gluons the amount of their depletion is particularly important. We will therefore have a closer look on the results for dN/dydN/dy, dEˉT/dyd\bar{E}_T/dy, and TiT_i by using two different gluon shadowing ratios, differing strongly in size. As a matter of fact, the calculated quantities differ significantly.Comment: typo in ref's removed, ack's added, no change in result

    Threshold resummation for exclusive B meson decays

    Full text link
    We argue that double logarithmic corrections αsln⁥2x\alpha_s\ln^2 x need to be resumed in perturbative QCD factorization theorem for exclusive BB meson decays, when the end-point region with a momentum fraction x→0x\to 0 is important. These double logarithms, being of the collinear origin, are absorbed into a quark jet function, which is defined by a matrix element of a quark field attached by a Wilson line. The factorization of the jet function from the decay B→γlΜˉB\to\gamma l\bar\nu is proved to all orders. Threshold resummation for the jet function leads to a universal, {\it i.e.}, process-independent, Sudakov factor, whose qualitative behavior is analyzed and found to smear the end-point singularities in heavy-to-light transition form factors.Comment: 10 pages, more details are include

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software

    Force-Extension Relations for Polymers with Sliding Links

    Full text link
    Topological entanglements in polymers are mimicked by sliding rings (slip-links) which enforce pair contacts between monomers. We study the force-extension curve for linear polymers in which slip-links create additional loops of variable size. For a single loop in a phantom chain, we obtain exact expressions for the average end-to-end separation: The linear response to a small force is related to the properties of the unstressed chain, while for a large force the polymer backbone can be treated as a sequence of Pincus--de Gennes blobs, the constraint effecting only a single blob. Generalizing this picture, scaling arguments are used to include self-avoiding effects.Comment: 4 pages, 5 figures; accepted to Phys. Rev. E (Brief Report

    Decay of Classical Chaotic Systems - the Case of the Bunimovich Stadium

    Full text link
    The escape of an ensemble of particles from the Bunimovich stadium via a small hole has been studied numerically. The decay probability starts out exponentially but has an algebraic tail. The weight of the algebraic decay tends to zero for vanishing hole size. This behaviour is explained by the slow transport of the particles close to the marginally stable bouncing ball orbits. It is contrasted with the decay function of the corresponding quantum system.Comment: 16 pages, RevTex, 3 figures are available upon request from [email protected], to be published in Phys.Rev.

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore