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Abstract

We calculate the initial non-equilibrium conditions from perturbative QCD
(pQCD) within Glauber multiple scattering theory for

√
s = 200 AGeV and√

s = 5.5 ATeV. At the soon available collider energies one will particularly test the
small x region of the parton distributions entering the cross sections. Therefore
shadowing effects, previously more or less unimportant, will lead to new effects
on variables such as particle multiplicities dN/dy, transverse energy production
dĒT /dy, and the initial temperature Ti. In this paper we will have a closer look
on the effects of shadowing by employing different parametrizations for the shad-
owing effect for valence quarks, sea quarks and gluons. Since the cross sections
at midrapidity are dominated by processes involving gluons the amount of their
depletion is particularly important. We will therefore have a closer look on the
results for dN/dy, dĒT /dy, and Ti by using two different gluon shadowing ra-
tios, differing strongly in size. As a matter of fact, the calculated quantities differ
significantly.
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1. Introduction

One of the challenging goals of heavy ion physics is the detection of the

quark-gluon plasma, a state in which the partons are able to move freely

within a distance larger than the typical confinement scale rconf. ∼ 1/ΛQCD ∼
1/0.2 GeV ∼ 1 fm. The build-up of this state should happen early in a

heavy ion reaction when the two streams of initially cold nuclear matter pass

through each other. Thereby first virtual partons are transformed to real ones

and later on in the expansion phase the fragmentation of the partons into col-

orless hadrons takes place. When separating pQCD from non-perturbative

effects at some semi-hard scale p0 = 2 GeV the respective time scale of

perturbative processes is thus of the order τ ∼ 1/p0 ∼ 0.1 fm/c which ap-

proximately coincides with the lower bound of the initial formation time of

the plasma in a local cell [1]. Therefore all further evolution of the system is

significantly influenced by the initial conditions of pQCD since macroscopic

parameters, as e.g. the initial temperature Ti, directly enter into hydrody-

namical calculations.

We here will focus on the very early phase of an ultrarelativistic heavy ion

collision and use pQCD above the semi-hard scale psh. = p0 = 2 GeV.

In a typical high energy pp or pp̄ event one measures distinct hadronic

jets with a transverse momenta of several GeV (pT ≥ 5 GeV) [2]. In con-

trast to the experimental very clean situation of hadronis jets at large pT one

encounters the problem of detectability of low transverse momentum jets in

heavy ion collisions. These so-called minijets contribute significantly to the

transverse energy produced in AB collisions due to their large multiplicity

[3]. The major part of these set-free partons are gluons that strongly domi-

nate the processes as their number is much larger for the relevant momentum

fractions. In turn the shadowing effects are expected to be much larger for

gluons than for the quark sea [4]. Therefore the relative contribution of the

gluons should decrease but still dominate the cross sections. The shadowing

of the gluons has the peculiarity of not being known exactly due to the neu-

trality of the mediators of the strong interaction which makes it impossible

to access RG(x,Q2) directly in a deep inelastic e + A event. Therefore we
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will here investigate two possible parametrizations of the shadowing ratio

RG = xGA/A · xGN for gluons as will be described below in detail.

2. Minijets

As outlined above, we will here investigate the effects of shadowing on the

minijet production cross sections. The production of a parton f = g, q, q̄ can

in leading order be described as [3]

dσf

dy
=

∫
dp2

T dy2

∑
ij,kl

x1fi(x1, Q
2) x2fj(x2, Q

2)

×
[
δfk

dσ̂ij→kl

dt̂
(t̂, û) + δfl

dσ̂ij→kl

dt̂
(û, t̂)

]
1

1 + δkl
(1)

The factor 1/(1 + δkl) enters due to the symmetry of processes with two

identical partons in the final state. The exchange term dσ̂(t̂, û) ↔ dσ̂(û, t̂)

accounts for the possible symmetries of e.g. having a quark from nucleon i

and a gluon from nucleon j and vice versa, i.e. it handles the interchange of

two of the propagators in the scattering process. The possible combinations

of initial states are

ij = gg, gq, qg, gq̄, q̄g, qq, qq̄, q̄q, q̄q̄ (2)

The momentum fractions of the partons in the initial state are

x1 =
pT√
s

[ey + ey2 ] , x2 =
pT√
s

[
e−y + e−y2

]
(3)

The integration regions are

p2
0 ≤ p2

T ≤
( √

s

2cosh y

)2

, − ln

(√
s

pT
− e−y

)
≤ y2 ≤ ln

(√
s

pT
− e−y

)
(4)

with

|y| ≤ ln

(√
s

2p0
+

√
s

4p2
0

− 1

)
(5)

The mandelstam variables are defined as

ŝ = x1 · x2 · s, t̂ = −p2
T

[
1 + e(y2−y)

]
, û = −p2

T

[
1 + e(y−y2)

]
(6)
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For the parton distributions entering the handbag graph we choose the GRV

LO set [5] for RHIC. Since at LHC one probes smaller momentum fractions

we there use the newer CTEQ4L parametrization [6] with Nf = 4 and Q =

pT . The normalization is done so that one has two outgoing partons in one

collision, i.e. ∫
dy
dσf

dy
= 2σf

tot (7)

In the calculations the boundaries for the calculations are either over the

whole rapidity range or |y| ≤ 0.5 for the central rapidity region.

To account for the higher order contributions at RHIC we choose a fixed K

factor of K=2.5 from comparison with experiment [3, 2]. In the range 5.5

GeV ≤ pT ≤ 25 GeV a factor K=2.5 is needed to describe the UA1 data, and

in the range 30 GeV ≤ pT ≤ 50 GeV a factor of K=1.6 is needed. However

the cross section has dropped so much at these large transverse momenta

that we keep K=2.5 fixed for all pT . For LHC energies the mean pT tends to

be larger; so we choose K=1.5 for this case.

By applying Glauber theory we calculate the mean number of events per unit

of rapidity:
dNf

dy
= TAA(b)

dσf

dy
(8)

where the nuclear overlap function TAA(b) for central events is given by

TAA(0) ≈ A2/πR2
A. For the nuclei in our calculation this gives TAuAu(0) =

29/mb and TPbPb(0) = 32/mb. Again it should be emphasized that dNf/dy

gives the number of collisions and that the number of partons is as twice

as high in a 2 → 2 process. The necessary volume, needed to derive the

densities from the absolute numbers, is calculated as

Vi = πR2
A∆y/p0, RA = A1/3 × 1.1 fm (9)

Therefore we get Vi(Au+ Au) = 12.9 fm3 and Vi(Pb+ Pb) = 13.4 fm3.

For the energy density at midrapidity we need the first ET moment:

σf 〈ET 〉 =
∫
dET

dσf

dET
〈ET 〉

4



Figure 1: RF2 vs. RG at Q2 = 4 GeV2 for 207Pb.

=
∫
dp2

T dy dy2

∑
ij,kl

x1fi(x1, Q
2) x2fj(x2, Q

2)

×
[
δfk

dσ̂ij→kl

dt̂
(t̂, û) + δfl

dσ̂ij→kl

dt̂
(û, t̂)

]
1

1 + δkl

pT ε(y) (10)

Here the acceptance function ε(y) is ε(y) = 1 for |y| ≤ 0.5 and ε(y) = 0

otherwise.

3. Nuclear Shadowing

In heavy ion collisions one has to account for an effect that does not appear

for processes involving two nucleons only: nuclear shadowing. In the lab

frame the deep inelastic scattering at small Bjorken x (x � 0.1) proceeds

via the vector mesons as described in the vector meson dominance model

(VMD) where the handbag graph contribution becomes small. In VMD

the interaction of the virtual photon with a nucleon or nucleus is described

as a two step process: the photon fluctuation into a qq̄ pair (the ρ, ω, φ

mesons at small Q2) within the coherence time lc and a subsequent strong

interaction with the target [8]. The coherence time arises in this picture from

the longitudinal momentum shift between the photon and the fluctuation:

lc ≈ 1/∆kz where ∆kz = kγ
z − kh

z . The cross section is:

σ(γ∗N) =
∫ 1

0
dz
∫
d2r |ψ(z, r)|2 σqq̄N (r) (11)
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Figure 2: RF2 vs. RG at Q2 = 4 GeV2 for 40Ca.

where the Sudakov variable z gives the momentum fraction carried by the

quark or the antiquark. The interaction of the fluctuation with the nucleon

can be described in the color transparency model as [9]

σqq̄N =
π2

3
r2αs(Q

′2)x′g(x′, Q′2) (12)

where x′ = M2
qq̄/(2mν), r is the transverse separation of the pair and Q′2 =

4/r2. For the interaction of the fluctuation with a nucleus one makes use of

Glauber-Gribov multiple scattering theory [10] where the fluctuation inter-

acts coherently with more than one nucleon in the nucleus when the coherence

length exceeds the mean separation between two nucleons:

σqq̄A =
∫
d2b

(
1− e−σqq̄N TA(b)/2

)
(13)

When expanding for large nuclei and taking the dominating double scatter-

ing term only one finds

σhA = AσhN

[
1− A1/3 σhN

8πa2
+ . . .

]
(14)

with a = 1.1fm.

Figures 1 and 2 show the results for 207Pb and 40Ca (for further details see

[4]).
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A very different scenario is employed in parton fusion models. Here the

process of parton parton fusion in nuclei can be understood as an overlapping

of quarks and gluons that yields a reduction of number densities at small

x and a creation of antishadowing for momentum conservation at larger x

[11]. The onset of this fusion process can be estimated to start at values

of the momentum fraction where the longitudinal wavelength (1/xP ) of a

parton exceeds the size of a nucleon (or the inter-nucleon distance) inside

the Lorentz contracted nucleus: 1/xP ≈ 2RnMn/P , corresponding to a value

x ≈ 0.1. Originally the idea of parton fusion was proposed in [12] and later

proven in [13] to appear when the total transverse size 1/Q of the partons

in a nucleon becomes larger than the proton radius to yield a transverse

overlapping within a unit of rapidity, xG(x) ≥ Q2R2. The usual gluon

distribution in the nucleon on the light cone in light-cone gauge (n · A =

A+ = 0) is given by

xG(x) = −(n−)2
∫
dλ

2π

〈
P
∣∣∣F+µ(0)F+

µ(λn)
∣∣∣P〉 (15)

The recombination is then described as the fusion of two gluon ladders into a

single vertex. One finally arives at a modified Altarelli-Parisi equation where

the fusion correction enters as a twist four light cone correlator. Typically

the fusion correction in the free nucleon turns out to be significant only for

unusually small values of x or Q2. As shown in [14] the situation changes

dramatically in heavy nuclei. Here the strength of the fusion for ladders com-

ing from independent constituents increases and is of the same order as the

fusion from non-independent constituents. Therefore, parton recombination

is strongly increased in heavy nuclei of A ∼ 200.

Unfortunately the different models do not give the same results for the

ratio RG(x,Q2). We will therefore use two versions of parametrizations to

investigate the effects of shadowing on the relevant variables. On the one

hand we use a Q2 dependent version (see figure 3) that tries to avoid any

model dependence by using sum rules for baryon number and momentum

[15] and on the other hand we use a modified version of a Q2 independent

parametrization (see figure 4) given in [16] which employs a much stronger
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Figure 3: Shadowed parton distributions as parametrized by Eskola. Note

that the gluon shadowing appears to be weaker than quark shadowing and

that the onset happens for smaller x.

gluon shadowing in accordance with the results of [4]. Especially for RHIC,

where the lower bound for the momentum fraction at midrapidity for pT =

p0 = 2 GeV is given by x = 2pT/
√
s = 0.02, the onset of the gluon shadowing,

i.e. the transition region between shadowing and antishadowing, is of great

importance.

In [15] the onset of gluon shadowing (RG = 1) is chosen at x ≈ 0.029 for

Q = 2 GeV motivated by the results found in [17] where the connection

between the gluon distribution and the Q2 dependence of F2 via the DGLAP

equations was employed:

∂F2

∂ln Q2
∼∑

i

e2ixG(2x,Q2) (16)

By using the NMC data [18] on deep inelastic scattering on a combina-

tion of Sn and C targets the ratio GSn(x)/GC(x) was derived in the range

0.011 ≤ x ≤ 0.18. The cross over point can, despite the large errorbars, be

guessed to be x ≈ 0.03. However one should add here that the situation

for RPb
G = xGPb(x)/xGN (x) can look rather different. Since this question of

the onset of gluon shadowing is not yet settled we chose the same onset for

quark and gluon shadowing in our modified parametrization to investigate
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Figure 4: Our variation of the parametrization given in [16] with much

stronger gluon shadowing as found in the VMD calculation in [4]. The

stronger shadowing is also motivated by the fact that we calculate central

collisions where the shadowing effect is stronger than for b-averaged collisions.

the relevance of this point. We fixed RF2 = RG = 1 at x ≈ 0.07. In VMD as

well as in parton fusion models the onset is treated on an equal footing: for

the coherent scattering processes in VMD it should make no difference (at

least for the onset) whether a qq̄ or a gg pair scatters from more than one

nucleon at lc ≥ rNN . In the parton fusion model one treats the leaking out

of the partons equally for sea quarks and for gluons since for both sea quarks

and for gluons one has a spatial extent of 1/xP in the longitudinal direction

and therefore the onset for RG and RF2 is essentially the same in this model.

4. Results

In the following we will give the results for the different parton species

f = g, q, q̄ at RHIC and LHC including the different shadowing parametriza-

tions or none shadowing, respectively. The results for the number of partons∫
dNf/dy can easily be derived from

∫
dy dσf/dy by the relation dNf/dy =

2TAA(0)dσf/dy. All results include a K-factor of K=2.5 for RHIC and K=1.5

for LHC. On the one hand we give the results for the whole y-range and on

the other hand we give the result for the central rapidity region which is

of special interest, not only from the experimental setup point of view but

also since it is the region where highest parton densities and the strongest
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shadowing effects are expected.

Let us start by giving the results without shadowing corrections for RHIC.

The first three tables give the unshadowed multiplicities integrated over the

whole rapidity range and over the central region, respectively. Tables 4

through 6 give the first ET moments for the respective parton species. The

rapidity distributions for the cross sections are depicted in figure 5.

Table 1:
∫
dy dNg/dy for

√
s = 200 AGeV

range of y gg → gg gq→ gq + gq→ gq TOTAL

all y 1841.5 768.5 2610.0

|y| ≤ 0.5 385.8 181.3 567.1

Table 2:
∫
dy dN q/dy for

√
s = 200 AGeV

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

all y 620.5 114.5 13.0 45.5 793.5

|y| ≤ 0.5 42.0 14.75 3.0 4.5 64.25

Table 3:
∫
dy dN q̄/dy for

√
s = 200 AGeV

range of y gq̄ → gq̄ qq̄ → qq̄ gg → qq q̄q̄ → q̄q̄ TOTAL

all y 148.3 45.5 13.0 4.3 169.8

|y| ≤ 0.5 25.0 10.3 3.0 0.8 39.1
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Figure 5: Unshadowed rapidity distributions of gluons, quarks, and anti-

quarks.
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Table 4:σg 〈ET 〉 [mb GeV]

range of y gg → gg gq→ gq + gq→ gq TOTAL

|y| ≤ 0.5 18.02 8.72 26.74

Table 5:σq 〈ET 〉 [mb GeV]

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

|y| ≤ 0.5 2.065 0.786 0.1398 0.22 3.2

Table 6:σq̄ 〈ET 〉 [mb GeV]

range of y gq̄ → gq̄ q̄q̄ → q̄q̄ gg → qq qq → qq TOTAL

|y| ≤ 0.5 1.206 0.51 0.139 0.004 1.896
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Figure 6: Rapidity distributions of gluons, quarks, and antiquarks with our

modified shadowing parametrization shown in figure 4.
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For the strong gluon shadowing shown in figure 4 one finds the following

multiplicities for the different parton species (the rapidity distributions are

shown in figure 6):

Table 7:
∫
dy dNg/dy for

√
s = 200 AGeV

range of y gg → gg gq→ gq + gq→ gq TOTAL

all y 1162.9 498.8 1661.7

|y| ≤ 0.5 245.1 120.4 365.4

Table 8:
∫
dy dN q/dy for

√
s = 200 AGeV

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

all y 392.95 97.15 7.25 36.25 533.6

|y| ≤ 0.5 31.9 11.7 1.73 3.48 48.88

Table 9:
∫
dy dN q̄/dy for

√
s = 200 AGeV

range of y gq̄ → gq̄ qq̄ → qq̄ gg → qq q̄q̄ → q̄q̄ TOTAL

all y 105.85 36.25 7.25 3.63 152.98

|y| ≤ 0.5 18.85 8.13 1.89 0.67 29.58

The first ET moments for the reactions including our modified strong gluon

shadowing are given by:

Table 10: σg 〈ET 〉 [mb GeV]

range of y gg → gg gq→ gq + gq→ gq TOTAL

|y| ≤ 0.5 11.87 5.93 17.8
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Table 11: σq 〈ET 〉 [mb GeV]

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

|y| ≤ 0.5 0.64 0.25 0.04 0.072 1.002

Table 12: σq̄ 〈ET 〉 [mb GeV]

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

|y| ≤ 0.5 0.37 0.013 0.037 0.165 0.585

We also calculated the multiplicities and first ET moments by employing the

newest available shadowing parametrization of Eskola et al shown in figure 3.

As emphasized above one should note that the shadowing of gluons in this

parametrization is smaller than the quark shadowing since it was tried to

stay away from any model dependence and just stick to sum rules expressing

the momentum and baryon number conservation but still assuming that at

small x (x ≈ 10−4) the gluon ratio should coincide with the sea quark ratio.

By employing this version we find the results listet in the following tables

and shown in figure 7 :

Table 13:
∫
dy dNg/dy for

√
s = 200 AGeV

range of y gg → gg gq→ gq + gq→ gq TOTAL

all y 1938.8 700.4 2639.2

|y| ≤ 0.5 403.3 163.9 567.2

Table 14:
∫
dy dN q/dy for

√
s = 200 AGeV

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

all y 565.5 101.5 130.5 37.8 835.3

|y| ≤ 0.5 39.15 12.63 3.05 3.48 58.31
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Figure 7: Rapidity distributions of gluons, quarks, and antiquarks with the

’98 version of the shadowing parametrization shown in figure 3.

Table 15:
∫
dy dN q̄/dy for

√
s = 200 AGeV

range of y gq̄ → gq̄ qq̄ → qq̄ gg → qq q̄q̄ → q̄q̄ TOTAL

all y 133.5 37.7 130.5 33.3 334.8

|y| ≤ 0.5 21.75 8.28 3.05 0.65 33.73
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Figure 8: Comparison of the rapidity distributions with strong gluon shadow-

ing (left figure) and weak shadowing (right figure) to unshadowed distribution

for RHIC (see text).

In figure 8 we directly compared the strong gluon shadowed distributions

(left figure) with the unshadowed one. The same was done for the com-

parison of the Q2 dependent ’98 shadowing version with the unshadowed

one (right figure). The solid lines give the total contribution, the dotted

ones the contribution from the gg subprocess and the dashed lines give the

gq + gq̄ contribution. The thick lines denote the unshadowed distributions

and the thin ones the two shadowed ones. Note that due to the onset of

gluon shadowing in the ’98 version at such small values of x one even gets an

enhancement for the gg → gg subprocess at RHIC. We also calculated the

pT distribution without and with the two shadowing versions at midrapidity

(figure 9). Unlike the strong shadowing case the cross over point of the curves

already happens at pT ≈ 2.5 GeV for the ’98 gluon shadowing version which

immediately explains the enhancement in the rapidity distribution. For the

first ET moment of the transverse energy we find with Eskola’s shadowing

parametrization

Table 16: σg 〈ET 〉 [mb GeV]

range of y gg → gg gq→ gq + gq→ gq TOTAL

|y| ≤ 0.5 19.2 8.05 27.25
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gq gq, strong shad.
gq gq, w/ o shadowing
gg gg, strong shad.
gg gg, w/ o shadowing

197
Au +

197
Au, RHIC

gq gq, ’98 shad.
gq gq, w/ o shadowing
gg gg, ’98 shad.
gg gg, w/ o shadowing

197
Au +

197
Au, RHIC

Figure 9: pT distributions for the two shadowing parametrizations at midra-

pidity.

Table 17: σq 〈ET 〉 [mb GeV]

range of y gq → gq qq → qq gg → qq qq → qq TOTAL

|y| ≤ 0.5 2.03 0.67 0.15 0.018 2.87

Table 18: σq̄ 〈ET 〉 [mb GeV]

range of y gq̄ → gq̄ q̄q̄ → q̄q̄ gg → qq qq → qq TOTAL

|y| ≤ 0.5 1.123 0.032 0.148 0.423 1.726

From the results above we can calculate the total transverse energy ET =

σ < ET > TAA(0) carried by the partons, the number and energy densi-

ties nf and εf , and also derive the initial temperature Ti if we assume the

behavior of an ideal gas of partons. To do so we need the initial volume.

With RA = A1/3 · 1.1 fm, TAuAu(0) = 29/mb, and RAu = 6.4 fm we find

Vi = πR2
A∆yτ = 12.9 fm3.

Therefore at RHIC without any shadowing and with K=2.5 we have at midra-

pidity a total number of 567 gluons, 64 quarks, and 39 antiquarks. These

carry a transverse energy of 774 GeV (gluons), 93 GeV (quarks), and 55

GeV (antiquarks).

It is then straight forward to derive the number densities by dividing by the

initial volume to yield: ng = 44 fm−3, nq = 4.96 fm−3, nq̄ = 3.02 fm−3.
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The energy densities can be derived in an analogous way to give:

εg = 60 GeV/fm−3, εq = 7.2 GeV/fm−3, and εq̄ = 4.3 GeV/fm−3. If we

assume total equilibrium we can derive the initial temperature from these

numbers as

εideal = 16π2 3

90
T 4

eq (17)

At this point some comments are appropriate: one could wonder whether

the system can be in equilibrium since one has only hard 2 → 2 parton scat-

terings in this Glauber approach. Also one often assumes global equilibrium

to be established after, say 1fm/c. Now here we are mainly interested in

local equilibrium as it is required for example for hydrodynamical calulca-

tions. The equilibration of partons in a local cell happens to be much faster

for the following reasons. The high Q2 hard scatterings among the partons

are absolutely unimportant for the equipartition of longitudinal and trans-

verse degrees of freedom. It are the soft interactions that are responsible

for this feature and there is a huge resource of soft partons available in the

nucleons, even when assuming the parton distributions to be shadowed in

heavy nuclei. The link to the short equilibration time is the fact that even

though the nucleus is Lorentz contracted to L/cosh y, the partons obey the

uncertainty principle and are therefore smeared out to distances 1/xP in the

infinite momentum frame and so the major part of the partons is outside

the Lorentz contracted disk. Based on some basic priciples and by using the

Fokker-Planck equation [1, 19] the time it takes to establish local equilibrium

in a cell was estimated to have a lower bound of τ0 ≈ 0.15 fm/c. As noted

above we introduced a lower momentum cut-off p0 = 2 GeV corresponding

to a proper time of about 0.1 fm/c. So therefore we may not be far from

local equilibration and the calculation on the initial temperature from the

initial energy densitiy could be rather justified.

For the temperature we take into account only the gluons due to their

large multiplicity and energy density that dominates the respective values

for the quarks. We then find Ti = 549.52 MeV for RHIC. If we neglect all

higher orders, i.e. take a K-factor of K=1 (which of course is wrong, but it

is instructive to see the impact on Ti), we get TK=1
i = 437 MeV .
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The same quantities were then calculated for the two different shadowing

scenarios. For the calculations employing the strong gluon shadowing we

found that there are 365 gluons, 49 quarks, and 30 antiquarks carrying

transverse energies of 516 GeV (gluons), 29 GeV (quarks), and 17 GeV

(antiquarks). The resulting number and energy densities are found to be

ng = 28.3 fm−3, nq = 3.79 fm−3, nq̄ = 2.33 fm−3, εg = 40 GeV/fm−3,

εq = 2.3 GeV/fm−3, and εq̄ = 1.3 GeV/fm−3. When we calculate the ini-

tial temperature for an ideal parton gas from these numbers we find that the

initial temperature decreases due to the reduced number and energy densi-

ties having their origin in the shadowing of the parton distributions. We find

Ti,shad = 496.5 MeV for a K factor of 2.5 and when neglecting all higher

order contributions we derive TK=1
i,shad = 394.9 MeV . So what we can learn

here ist the following: due to the reduced number of partons involved in

the hard processes a reduction in the number densities and therefore in the

energy densities entering the formula for the temperature of a thermalized

parton gas results. One should note that the onset of shadowing in our

modified shadowing parametrization was chosen same for quarks and glu-

ons in accordance with the onset of coherent scattering of a quark antiquark

or gluon gluon pair, respectively off a nucleus. Now in the second shadow-

ing parametrization we employed one finds that the onset of shadowing for

gluons starts at smaller momentum fractions from xGSn(x)/xGC(x) data.

With a momentum cut-off p0 = 2 GeV the momentum fractions involved

in processes at midrapidity are bound from below at x = 0.02. Therefore

one is right on the edge of the onset of shadowing of the parametrizations

and one should expect the very interesting case that one is on the edge to

the antishadowing region for gluons in the parametrization of Eskola et al

but not so for the parametrization employing the strong gluon shadowing.

This behavior is immediately reflected in the number and energy densities.

We found that for this specific shadowing parametrization one has 567 glu-

ons, 58 quarks, and 34 antiquarks carrying transverse energies of 790

GeV (gluons), 83 GeV (quarks), and 50 GeV (antiquarks). We found

the following densities: ng = 44 fm−3, nq = 4.49 fm−3, nq̄ = 2.64 fm−3,

εg = 61.2 GeV/fm−3, εq = 6.43 GeV/fm−3, and εq̄ = 3.88 GeV/fm−3.
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These numbers result in an initial temperature of Ti,shad = 552.3 MeV and

TK=1
i,shad = 439.2 MeV , respectively.

We also went through the same program to investigate the impact of the

different shadowing parametrizations at the higher LHC energy of
√
s = 5.5

TeV. We here used the newer parton distributions of CTEQ4L since the in-

volved momentum fractions are so small that any new information at small

x are valuable. When comparing GRV ’94 and CTEQ4L one finds a dif-

ference of about a factor of two at x ≈ 10−5. At LHC energies the effect

of shadowing should be much more relevant than at RHIC due to the re-

gion of smaller x that gets probed. Because of the strong dominance of the

gluon component in the nucleon we restricted ourself to the calculation of

σg, N̄g, and therefore on the transverse energy and temperature produced

by the final state gluons only. Let us first begin with the unshadowed results.

Table 19:
∫
dy dNg/dy for

√
s = 5.5 ATeV

range of y gg → gg gq → gq + gq → gq TOTAL

all y 73645.44 12012.16 85666.6

|y| ≤ 0.5 12478.08 2104.96 14583.04

Table 20: σg 〈ET 〉 [mb GeV]

range of y gg → gg gq→ gq + gq→ gq TOTAL

|y| ≤ 0.5 438.09 74.92 513.01

The rapidity distributions for unshadowed and shadowed gluons at LHC is

depicted in figure 10.
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Figure 10: Rapidity distributions of unshadowed (upper figure) and shadowed

gluons (lower two figures) at LHC. The figure in the middle was derived by

employing the strong gluon shadowing, whereas the bottom figure employed

the Q2 dependent ’98 version. Note the change in shape when the strong

gluon shadowing is employed.
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For the strong gluon shadowing we find the following results

Table 21:
∫
dy dNg/dy for

√
s = 5.5 ATeV

range of y gg → gg gq → gq + gq → gq TOTAL

all y 11937.91 3117.44 15055.35

|y| ≤ 0.5 1009.92 258.56 1268.48

Table 22: σg 〈ET 〉 [mb GeV]

range of y gg → gg gq→ gq + gq→ gq TOTAL

|y| ≤ 0.5 48.17 12.22 60.39

With the weaker shadowing one finds

Table 23:
∫
dy dNg/dy for

√
s = 5.5 ATeV

range of y gg → gg gq→ gq + gq→ gq TOTAL

all y 49838.1 7735.68 57573.78

|y| ≤ 0.5 6333.44 1048.96 7382.4

Table 24: σg 〈ET 〉 [mb GeV]

range of y gg → gg gq→ gq + gq→ gq TOTAL

|y| ≤ 0.5 245.92 40.95 286.87

A direct comparison between the results for shadowed and unshadowed

parton distribution functions is shown in figure 11 and the pT distributions

for LHC are shown in figure 12.
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Figure 11: Comparison of the rapidity distributions with strong gluon shad-

owing (left figure) and weak shadowing (right figure) to unshadowed distribu-

tion for LHC. The solid lines give the total contribution, the dotted ones de-

pict the gg → gg process and the dashed ones stand for the gq→ gq+gq̄→ gq̄

processes. The thick lines again give the unshadowed results.

gq gq, strong shad.
gq gq, w/ o shadowing
gg gg, strong shad.
gg gg, w/ o shadowing

208
Pb +

208
Pb, LHC

gq gq, ’98 shad.
gq gq, w/ o shadowing
gg gg, ’98 shad.
gg gg, w/ o shadowing

208
Pb +

208
Pb, LHC

Figure 12: pT distributions for the two shadowing parametrizations at midra-

pidity for LHC.
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Therefore we find the following numbers at LHC: for unshadowed parton

distributions one has at midrapidity 14583 gluons that carry a transverse

energy of 16.4 TeV. The number density thus is ng = 1092.4 fm−3 and

the energy density is given by εg = 1229.7 GeV/fm−3. The initial temper-

ature of an ideal gas derived with these numbers is Ti = 1169 MeV and

TK=1.0
i = 1056.5 MeV for K=1. With the strong gluon shadowing we find

1268 gluons carrying a transverse energy of 1.93 TeV. We therefore have

ng = 94.9 fm−3 and εg = 144.8 GeV/fm−3 resulting in Ti = 684.9 MeV

for K=1.5 and TK=1.0
i = 618.9 MeV. With Eskola’s newest shadowing ver-

sion we find 7382 gluons which carry a total transverse energy of 9.18 TeV,

ng = 9552.9 fm−3, and εg = 678.6 GeV/fm−3 which results in a temper-

ature Ti = 1011.08 MeV for K=1.5 and TK=1.0
i = 913.62 MeV for K=1.

5. Entropy production and π multiplicities

As is known, total entropy and entropy density, respectively, play a very im-

portant role in the formation of a quark-gluon plasma. Total entropy reaches

its final value when the system equilibrates and can, if assuming an adiabati-

cal further evolution, be related to the effective number of degrees of freedom

in the quark-gluon and in a pure pion plasma via [20, 21]

r =
sπ(Tc)

sqg(Tc)
≈ 0.7± 0.2 (18)

where sπ and sqg are the entropy densities in the pion and quark-gluon

plasma. The total entropy can then be related to the pion multiplicity as

dS

dy
= cqg

(
dN qg

dy

)
b=0

≈ cπ

r

(
dNπ

dy

)
b=0

(19)

where cqg = 4.02 for Nf = 4 and cπ ≈ 3.6.

A note on the separation between hard and soft processes is appropriate at

this point. As emphasized above we introduced a cut-off at p0 = 2 GeV to

ensure the applicability of perturbative QCD. Nevertheless there is always a

soft component contributing to the production of transverse energy neglected

in our studies so far. In [14] it was shown that with p0 = 2 GeV at SPS the

hard partons only carry about 4% of the total transverse energy ET . At RHIC

energies they carry ≈ 50% and for
√
s = 2 TeV the hard partons already
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carry ≈ 80% of the total transverse energy. Since we here solely want to

investigate the role of shadowing in hard reactions we will not calculate the

pion multiplicity for RHIC where the soft contribution still is significant but

restrict ourselves to the pion number at y ≈ 0 for LHC energies.

If we employ the numbers for the entropy densities in the different plasmas

and use our findings on the contributions of shadowing to the number of

minijets we find that at y = 0 one has(
dNπ

dy

)
b=0

≈ 8309,(
dNπ

dy

)
b=0

≈ 4818, (20)(
dNπ

dy

)
b=0

≈ 989,

when employing no shadowing, the ’98 version of Eskola, and the strong

gluon shadowing parametrization.

6. Conclusions

In this paper we investigated the influence of nuclear shadowing on rapidity

spectra, transverse energy production and on macroscopic quantities such as

the initial temperature. We employed two different versions of parametriza-

tions for the shadowing: one with a strong initial gluon shadowing and a

model independent one recently published by Eskola et al [15]. We found

that the latter one gives an enhancement of minijet production at RHIC in

contrast to the other case were a reduction to ≈ 65% results. This difference

directly manifests itself in the initial temperature Ti which happens to be

smaller only for the strong gluon shadowing. At LHC the situation changes

since there also the weakly shadowed gluons finally result in lower spectra

and Ti. Since the two shadowing parametrizations differ so drastically one

finds a large difference in the results for the number of minijets at midrapid-

ity: for the strong shadowing one has ≈ 1300 gluons whereas for the weaker

shadowing one finds ≈ 7000 gluons. Since there are so few gluons for the

strong gluon shadowing we find that the initial temperature at LHC is not

dramatically higher than at RHIC!
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