330 research outputs found

    Weighted programming: A programming paradigm for specifying mathematical models

    Get PDF
    We study weighted programming, a programming paradigm for specifying mathematical models. More specifically, the weighted programs we investigate are like usual imperative programs with two additional features: (1) nondeterministic branching and (2) weighting execution traces. Weights can be numbers but also other objects like words from an alphabet, polynomials, formal power series, or cardinal numbers. We argue that weighted programming as a paradigm can be used to specify mathematical models beyond probability distributions (as is done in probabilistic programming). We develop weakest-precondition- and weakest-liberal-precondition-style calculi à la Dijkstra for reasoning about mathematical models specified by weighted programs. We present several case studies. For instance, we use weighted programming to model the ski rental problem - an optimization problem. We model not only the optimization problem itself, but also the best deterministic online algorithm for solving this problem as weighted programs. By means of weakest-precondition-style reasoning, we can determine the competitive ratio of the online algorithm on source code level

    Stellar sources in the ISOGAL intermediate bulge fields

    Get PDF
    We present a study of ISOGAL sources in the "intermediate" galactic bulge (|ll| << 2^\circ, |bb| \sim 1^\circ--4^\circ), observed by ISOCAM at 7 and 15 μm\mu m. In combination with near-infrared (I, J, Ks_{\rm s}) data of DENIS survey, complemented by 2MASS data, we discuss the nature of the ISOGAL sources, their luminosities, the interstellar extinction and the mass-loss rates. A large fraction of the 1464 detected sources at 15 μm\mu m are AGB stars above the RGB tip, a number of them show an excess in ([7]-[15])0_{\rm 0} and (Ks_{\rm s}-[15])0_{\rm 0} colours, characteristic of mass-loss. The latter, especially (Ks_{\rm s}-[15])0_{\rm 0}, provide estimates of the mass-loss rates and show their distribution in the range 108^{-8} to 105^{-5} M_{\rm \odot}/yr.Comment: 16 pages, accepted for publication in Astronomy and Astrophysic

    Optics in Curved Space

    Get PDF
    We experimentally study the impact of intrinsic and extrinsic curvature of space on the evolution of light. We show that the topology of a surface matters for radii of curvature comparable with the wavelength, whereas for macroscopically curved surfaces only intrinsic curvature is relevant. On a surface with constant positive Gaussian curvature we observe periodic refocusing, self-imaging, and diffractionless propagation. In contrast, light spreads exponentially on surfaces with constant negative Gaussian curvature. For the first time we realized two beam interference in negatively curved space

    Developmental and Molecular Changes Underlying the Vernalization-Induced Transition to Flowering in Aquilegia coerulea (James)

    Get PDF
    Reproductive success in plants is dependent on many factors but the precise timing of flowering is certainly among the most crucial. Perennial plants often have a vernalization or over-wintering requirement in order to successfully flower in the spring. The shoot apical meristem undergoes drastic developmental and molecular changes as it transitions into inflorescence meristem (IM) identity, which then gives rise to floral meristems (FMs). In this study, we have examined the developmental and gene expression changes underlying the transition from the vegetative to reproductive phases in the basal eudicot Aquilegia coerulea, which has evolved a vernalization response independently relative to other established model systems. Results from both our histology and scanning electron studies demonstrate that developmental changes in the meristem occur gradually during the third and fourth weeks of vernalization. Based on RNAseq data and cluster analysis, several known flowering time loci, including AqFT and AqFL1, exhibit dramatic changes in expression during the fourth week. Further consideration of candidate gene homologs as well as unexpected loci of interest creates a framework in which we can begin to explore the genetic basis of the flowering time transition in Aquilegia

    Cross-Sectional Study of Toxoplasma gondii Infection in Pig Farms in England

    Get PDF
    Ingestion of undercooked meat has been proposed as an important source of human Toxoplasma gondii infection. To ascertain the contribution of meat consumption to the risk of human infection, estimates of the prevalence of infection in meat-producing animals are required. A cross-sectional study was conducted to assess T. gondii infection in pigs raised in England, to identify risk factors for infection, and to compare performance of two serological tests: modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA). Blood samples from 2071 slaughter pigs originating from 131 farms were collected and 75 (3.6%) were found to be positive by MAT. Positive pigs originated from 24 farms. A subset of samples (n = 492) were tested using ELISA, and a significant disagreement (p = 50% probability of having at least one infected pig (n = 5, 6.8%) and (2) >= 10% probability (n = 15, 20.5%). Data on putative risk factors were obtained for 73 farms. Using a 10% cutoff, the relative risk (RR) of infection was higher in farms where cats have direct access to pigs' food (RR = 2.6; p = 0.04), pigs have outdoor access (RR = 3.0; p = 0.04), and farms keeping <= 200 pigs (RR = 3.9; p = 0.02), with strong collinearity between the three variables. The findings suggest a low level of T. gondii infection in the farms studied, most of which are likely to send to slaughter batches comprising 100% uninfected pigs. These results provide key inputs to quantitatively assess the T. gondii risk posed by pork to consumers

    First HARPSpol discoveries of magnetic fields in massive stars

    Get PDF
    In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. In this Letter, we report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements are strongly varying for HD 130807 from \sim-100 G to \sim700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from \sim-40 to -80 G, and from \sim-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of the MiMeS objectives: the understanding of origin of magnetic fields in massive stars and their impacts on stellar structure and evolution.Comment: 4 pages, 2 figures, accepted for publication in A&A Lette

    First ISOCAM images of the Milky Way

    Get PDF
    ISOGAL is a 15 &#956;m ISOCAM survey of &#8764; 12 deg2 in the Galactic Plane interior to |&#x2113;| = 45&#176;. In combination with IJK data from the near-infrared southern sky survey DENIS, the ISO images allow the first detailed study of stellar populations throughout the inner Galaxy. We present preliminary results from a test observation at &#x2113; = 45&#176; with 6" pixels and completeness limit 8 mJy. Of the &#8764; 3000 sources deg2 detected, about half are KM giants, seen through extinction of up to Av, ∼, 30,while most of the remainder are probably dusty young stars. Although away from bright IRAS regions, the field displays spectacular emission features, and, unexpectedly, a number of regions which are optically thick at 15 &#956;m. The dark regions are presumably dense filaments with Av, >, 25

    ISOGAL: A deep survey of the obscured inner Milky Way with ISO at 7 and 15 micron and with DENIS in the near-infrared

    Get PDF
    The ISOGAL project is an infrared survey of specific regions sampling the Galactic Plane selected to provide information on Galactic structure,stellar populations,stellar mass-loss and the recent star formation history of the inner disk and Bulge of the Galaxy. ISOGAL combines 7 and 15 micron ISOCAM observations - with a resolution of 6'' at worst - with DENIS IJKs data to determine the nature of the sources and theinterstellar extinction. We have observed about 16 square degrees with a sensitivity approaching 10-20mJy, detecting ~10^5 sources,mostly AGB stars,red giants and young stars. The main features of the ISOGAL survey and the observations are summarized in this paper,together with a brief discussion of data processing and quality. The primary ISOGAL products are described briefly (a full description is given in Schuller et al. 2003, astro-ph/0304309): viz. the images and theISOGAL-DENIS five-wavelength point source catalogue. The main scientific results already derived or in progress are summarized. These include astrometrically calibrated 7 and 15um images,determining structures of resolved sources; identification and properties of interstellar dark clouds; quantification of the infrared extinction law and source dereddening; analysis of red giant and (especially) AGB stellar populations in the central Bulge,determining luminosity,presence of circumstellar dust and mass--loss rate,and source classification,supplemented in some cases by ISO/CVF spectroscopy; detection of young stellar objects of diverse types,especially in the inner Bulge with information about the present and recent star formation rate; identification of foreground sources with mid-IR excess. These results are the subject of about 25 refereed papers published or in preparation.Comment: A&A in press. 19 pages,10 Ps figures; problems with figures fixe

    CONCERTO: High-fidelity simulation of millimeter line emissions of galaxies and [CII] intensity mapping

    Get PDF
    The intensity mapping of the [CII] 158-μm line redshifted to the submillimeter window is a promising probe of the za&gt;4 star formation and its spatial distribution into large-scale structures. To prepare the first-generation experiments (e.g., CONCERTO), we need realistic simulations of the submillimeter extragalactic sky in spectroscopy. We present a new version of the simulated infrared dusty extragalactic sky (SIDES) model including the main submillimeter lines around 1 mm (CO, [CII], [CI]). This approach successfully reproduces the observed line luminosity functions. We then use our simulation to generate CONCERTO-like cubes (125-305 GHz) and forecast the power spectra of the fluctuations caused by the various astrophysical components at those frequencies. Depending on our assumptions on the relation between the star formation rate and [CII] luminosity, and the star formation history, our predictions of the za∼6 [CII] power spectrum vary by two orders of magnitude. This highlights how uncertain the predictions are and how important future measurements will be to improve our understanding of this early epoch. SIDES can reproduce the CO shot noise recently measured at a4;100 GHz by the millimeter-wavelength intensity mapping experiment (mmIME). Finally, we compare the contribution of the different astrophysical components at various redshifts to the power spectra. The continuum is by far the brightest, by a factor of three to 100, depending on the frequency. At 300 GHz, the CO foreground power spectrum is higher than the [CII] one for our base scenario. At lower frequencies, the contrast between [CII] and extragalactic foregrounds is even worse. Masking the known galaxies from deep surveys should allow us to reduce the foregrounds to 20% of the [CII] power spectrum up to z∼ 6.5. However, this masking method will not be sufficient at higher redshifts. The code and the products of our simulation are released publicly, and can be used for both intensity mapping experiments and submillimeter continuum and line surveys

    Multisite spectroscopic seismic study of the beta Cep star V2052 Oph: inhibition of mixing by its magnetic field

    Get PDF
    We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic beta Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f_1=7.14846 d^{-1}) and by rotational modulation (P_rot=3.638833 d). Two non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign (Handler et al. 2012) and known in the literature. Using the photometric constraints on the degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for the mass (M \in [8.2,9.6] M_o) and central hydrogen abundance (X_c \in [0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and n_3=-2, and to derive an equatorial rotation velocity v_eq \in [71,75] km s^{-1}. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (alpha_ov \in [0,0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic beta Cep star theta Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.Comment: 12 pages, 6 figures and 5 tables; accepted for publication in MNRAS on 2012 August 1
    corecore