220 research outputs found

    Novelty N2-P3a Complex and Theta Oscillations Reflect Improving Neural Coordination Within Frontal Brain Networks During Adolescence

    Get PDF
    Adolescents are easily distracted by novel items than adults. Maturation of the frontal cortex and its integration into widely distributed brain networks may result in diminishing distractibility with the transition into young adulthood. The aim of this study was to investigate maturational changes of brain activity during novelty processing. We hypothesized that during adolescence, timing and task-relevant modulation of frontal cortex network activity elicited by novelty processing improves, concurrently with increasing cognitive control abilities. A visual novelty oddball task was utilized in combination with EEG measurements to investigate brain maturation between 8–28 years of age (n = 84). Developmental changes of the frontal N2-P3a complex and concurrent theta oscillations (4–7 Hz) elicited by rare and unexpected novel stimuli were analyzed using regression models. N2 amplitude decreased, P3a amplitude increased, and latency of both components decreased with age. Pre-stimulus amplitude of theta oscillations decreased, while inter-trial consistency, task-related amplitude modulation and inter-site connectivity of frontal theta oscillations increased with age. Targets, intertwined in a stimulus train with regular non-targets and novels, were detected faster with increasing age. These results indicate that neural processing of novel stimuli became faster and the neural activation pattern more precise in timing and amplitude modulation. Better inter-site connectivity further implicates that frontal brain maturation leads to global neural reorganization and better integration of frontal brain activity within widely distributed brain networks. Faster target detection indicated that these maturational changes in neural activation during novelty processing may result in diminished distractibility and increased cognitive control to pursue the task

    Measurement of cognitive dynamics during video watching through event-related potentials (ERPs) and oscillations (EROs)

    Get PDF
    Event-related potentials (ERPs) and oscillations (EROs) are reliable measures of cognition, but they require time-locked electroencephalographic (EEG) data to repetitive triggers that are not available in continuous sensory input streams. However, such real-life-like stimulation by videos or virtual-reality environments may serve as powerful means of creating specific cognitive or affective states and help to investigate dysfunctions in psychiatric and neurological disorders more efficiently. This study aims to develop a method to generate ERPs and EROs during watching videos. Repeated luminance changes were introduced on short video segments, while EEGs of 10 subjects were recorded. The ERP/EROs time-locked to these distortions were analyzed in time and time-frequency domains and tested for their cognitive significance through a long term memory test that included frames from the watched videos. For each subject, ERPs and EROs corresponding to video segments of recalled images with 25% shortest and 25% longest reaction times were compared. ERPs produced by transient luminance changes displayed statistically significant fluctuations both in time and time-frequency domains. Statistical analyses showed that a positivity around 450 ms, a negativity around 500 ms and delta and theta EROs correlated with memory performance. Few studies mixed video streams with simultaneous ERP/ERO experiments with discrete task-relevant or passively presented auditory or somatosensory stimuli, while the present study, by obtaining ERPs and EROs to task-irrelevant events in the same sensory modality as that of the continuous sensory input, produces minimal interference with the main focus of attention on the video stream

    Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Get PDF
    As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz) synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain), and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more ?connector bridges? between the frontal and parietal cortices and less ?connector hubs? in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration

    Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials

    Get PDF
    BACKGROUND: Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. RESULTS: The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25-35 Hz) and to a lesser extent of 80 Hz oscillation. After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25-35 Hz) peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. CONCLUSION: The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Tune Deafness: Processing Melodic Errors Outside of Conscious Awareness as Reflected by Components of the Auditory ERP

    Get PDF
    Tune deafness (TD) is a central auditory processing disorder characterized by the inability to discriminate pitch, reproduce melodies or to recognize deviations in melodic structure, in spite of normal hearing. The cause of the disorder is unknown. To identify a pathophysiological marker, we ascertained a group of severely affected TD patients using the Distorted Tunes Test, an ecologically valid task with a longstanding history, and used electrophysiological methods to characterize the brain's responses to correct and incorrect melodic sequences. As expected, we identified a neural correlate of patients' unawareness of melodic distortions: deviant notes modulated long-latency auditory evoked potentials and elicited a mismatch negativity in controls but not in affected subjects. However a robust P300 was elicited by deviant notes, suggesting that, as in blindsight, TD subjects process stimuli that they cannot consciously perceive. Given the high heritability of TD, these patients may make it possible to use genetic methods to study cellular and molecular mechanisms underlying conscious awareness

    Occipital gamma activation during Vipassana meditation

    Get PDF
    Long-term Vipassana meditators sat in meditation vs. a control rest (mind-wandering) state for 21 min in a counterbalanced design with spontaneous EEG recorded. Meditation state dynamics were measured with spectral decomposition of the last 6 min of the eyes-closed silent meditation compared to control state. Meditation was associated with a decrease in frontal delta (1–4 Hz) power, especially pronounced in those participants not reporting drowsiness during meditation. Relative increase in frontal theta (4–8 Hz) power was observed during meditation, as well as significantly increased parieto-occipital gamma (35–45 Hz) power, but no other state effects were found for the theta (4–8 Hz), alpha (8–12 Hz), or beta (12–25 Hz) bands. Alpha power was sensitive to condition order, and more experienced meditators exhibited no tendency toward enhanced alpha during meditation relative to the control task. All participants tended to exhibit decreased alpha in association with reported drowsiness. Cross-experimental session occipital gamma power was the greatest in meditators with a daily practice of 10+ years, and the meditation-related gamma power increase was similarly the strongest in such advanced practitioners. The findings suggest that long-term Vipassana meditation contributes to increased occipital gamma power related to long-term meditational expertise and enhanced sensory awareness

    Time Pressure Modulates Electrophysiological Correlates of Early Visual Processing

    Get PDF
    BACKGROUND: Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy-usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements. CONCLUSIONS/SIGNIFICANCE: Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing

    Gamma Oscillation in Schizophrenia

    Get PDF
    Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia. Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many perceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizophrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention, object representation, and working memory, in animals, healthy humans and patients with schizophrenia

    Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation

    Get PDF
    © The Author(s) 2016. Maternal infection during pregnancy increases the risk of offspring developing schizophrenia later in life. Similarly, animal models of maternal immune activation (MIA) induce behavioural and anatomical disturbances consistent with a schizophrenia-like phenotype in offspring. Notably, cognitive impairments in tasks dependent on the prefrontal cortex (PFC) are observed in humans with schizophrenia and in offspring after MIA during pregnancy. Recent studies of post-mortem tissue from individuals with schizophrenia revealed deficits in extracellular matrix structures called perineuronal nets (PNNs), particularly in PFC. Given these findings, we examined PNNs over the course of development in a well-characterized rat model of MIA using polyinosinic-polycytidylic acid (polyI:C). We found selective reductions of PNNs in the PFC of polyI:C offspring which did not manifest until early adulthood. These deficits were not associated with changes in parvalbumin cell density, but a decrease in the percentage of parvalbumin cells surrounded by a PNN. Developmental expression of PNNs was also significantly altered in the amygdala of polyI:C offspring. Our results indicate MIA causes region specific developmental abnormalities in PNNs in the PFC of offspring. These findings confirm the polyI:C model replicates neuropathological alterations associated with schizophrenia and may identify novel mechanisms for cognitive and emotional dysfunction in the disorder

    The Effect of Repetitive Transcranial Magnetic Stimulation on Gamma Oscillatory Activity in Schizophrenia

    Get PDF
    Gamma (γ) oscillations (30-50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ) during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive method to stimulate the cortex that has been shown to enhance cognition and γ oscillatory activity during WM.We examined the effect of 20 Hz rTMS over the DLPFC on γ oscillatory activity elicited during the N-back task in 24 patients with SCZ compared to 22 healthy subjects. Prior to rTMS, patients with SCZ elicited excessive γ oscillatory activity compared to healthy subjects across WM load. Active rTMS resulted in the reduction of frontal γ oscillatory activity in patients with SCZ, while potentiating activity in healthy subjects in the 3-back, the most difficult condition. Further, these effects on γ oscillatory activity were found to be specific to the frontal brain region and were absent in the parieto-occipital brain region.We suggest that this opposing effect of rTMS on γ oscillatory activity in patients with SCZ versus healthy subjects may be related to homeostatic plasticity leading to differential effects of rTMS on γ oscillatory activity depending on baseline differences. These findings provide important insights into the neurophysiological mechanisms underlying WM deficits in SCZ and demonstrated that rTMS can modulate γ oscillatory activity that may be a possible avenue for cognitive potentiation in this disorder
    corecore