15 research outputs found

    Type I Diabetes in Children: Facilitating Adherence to Medical Regimens

    Get PDF

    Genome-wide association trans-ethnic meta-analyses identifies novel associations regulating coagulation Factor VIII and von Willebrand Factor plasma levels

    Get PDF
    BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS: We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Analysing the potential of hydrophilic adhesive systems to optimise orthodontic bracket rebonding

    Get PDF
    Introduction!#!Bond failure during fixed orthodontic treatment is a frequently occurring problem. As bracket rebonding is associated with reduced shear bond strength, the aim of the present investigation is to analyse the effect of different innovative rebonding systems to identify optimised rebonding protocols for orthodontic patient care.!##!Methods!#!Metallic brackets were bonded to the frontal enamel surfaces of 240 bovine lower incisors embedded in resin bases. Teeth were randomly divided into two major experimental groups: in group 1 a hydrophilic primer (Assure™ PLUS) was compared to commonly used orthodontic adhesives (Transbond XT™, BrackFix®, Grengloo™) and a zero control. In group 2 different rebonding systems were analysed using a hydrophilic primer (Assure™ PLUS), a methyl methacrylate-consisting primer (Plastic Conditioner) and a conventional adhesive (Transbond XT™). All teeth were tested for shear bond strength according to the DIN-13990 standard, the Adhesive Remnant Index and enamel fracture rate.!##!Results!#!The hydrophilic primer enhanced shear bond strength at first bonding (Assure™ PLUS 20.29 ± 4.95 MPa vs. Transbond XT™ 18.45 ± 2.57 MPa; BrackFix® 17 ± 5.2 MPa; Grengloo™ 19.08 ± 3.19 MPa; Meron 8.7 ± 3.9 MPa) and second bonding (Assure™ PLUS 16.76 ± 3.71 MPa vs. Transbond XT™ 13.06 ± 3.19 MPa). Using Plastic Conditioner did not seem to improve shear bond strength at rebonding (13.57 ± 2.94). When enamel etching was left out, required shear bond strength could not be achieved (Plastic Conditioner + Assure™ PLUS 8.12 ± 3.34 MPa; Plastic Conditioner: 3.7 ± 1.95 MPa). Hydrophilic priming systems showed decreased ARI-scores (second bonding: 2.63) and increased enamel fracture rates (first bonding: 55%; second bonding 21,05%).!##!Conclusions!#!Based on the present study we found that rebonding strength could be compensated by the use of hydrophilic priming systems. The additional use of a methyl methacrylate-consisting primer does not seem to enhance shear bond strength. No etching approaches resulted in non-sufficient bond strength

    siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids[S]

    No full text
    Increased serum apolipoprotein (apo)B and associated LDL levels are well-correlated with an increased risk of coronary disease. ApoE–/– and low density lipoprotein receptor (LDLr)–/– mice have been extensively used for studies of coronary atherosclerosis. These animals show atherosclerotic lesions similar to those in humans, but their serum lipids are low in apoB-containing LDL particles. We describe the development of a new mouse model with a human-like lipid profile. Ldlr CETP+/– hemizygous mice carry a single copy of the human CETP transgene and a single copy of a LDL receptor mutation. To evaluate the apoB pathways in this mouse model, we used novel short-interfering RNAs (siRNA) formulated in lipid nanoparticles (LNP). ApoB siRNAs induced up to 95% reduction of liver ApoB mRNA and serum apoB protein, and a significant lowering of serum LDL in Ldlr CETP+/– mice. ApoB targeting is specific and dose-dependent, and it shows lipid-lowering effects for over three weeks. Although specific triglycerides (TG) were affected by ApoB mRNA knockdown (KD) and the total plasma lipid levels were decreased by 70%, the overall lipid distribution did not change. Results presented here demonstrate a new mouse model for investigating additional targets within the ApoB pathways using the siRNA modality
    corecore