20 research outputs found
IL-33: An Extracellular Arbiter of Macrophage Mediated Myogenesis
Volumetric muscle loss (VML) is a debilitating injury associated with chronic disability, and existing treatment options remain unsatisfactory. The current therapeutic gold standard is autologous free-flap grafting; however, the efficacy of this treatment option is limited(Corona, Rivera, Owens, Wenke, & Rathbone, 2015). Biologic scaffolds composed of extracellular matrix (ECM) provide an inductive microenvironment that promotes functional, site appropriate tissue deposition(Dziki, Sicari, Wolf, Cramer, & Badylak, 2016; Dziki, Wang, et al., 2017) and modulation of local immune responses, in particular macrophages. ECM bioscaffolds promote a transition from a pro-inflammatory, M1-like to a pro-healing, M2-like macrophage phenotype that is critical for skeletal muscle tissue healing(Brown, Londono, et al., 2012). However, the component(s) of ECM that govern this phenotypic transition remain poorly understood. Recent studies suggest that matrix-bound nanovesicles (MBV), a component of ECM, may be responsible for ECM-mediated macrophage phenotype activation(L. Huleihel, J. G. Bartolacci, et al., 2017). MBV are an abundant source of extracellular IL-33. IL-33, signaling through the ST2 receptor, is an established mediator of macrophage phenotype(Joshi et al., 2010; H. Xu et al., 2019). Evidence supports non-canonical, ST2-independent IL-33 signaling as a mechanism by which MBV promote a pro-healing macrophage phenotype(G. S. Hussey et al., 2019). However, the nature of MBV-associated IL-33 signaling remains unexplored. The objectives of the present thesis were to determine the phenotypic response of macrophages and muscle stem cells to MBV-associated IL-33, to establish a mechanism for MBV uptake and the resulting localization of delivered MBV cargo, and to interrogate the effects of IL-33 deletion on macrophage phenotype and functional recovery in a mouse model of muscle injury. Results show that ST2-independent IL-33 signaling results in an M2-like macrophage phenotype. MBV-associated IL-33 is internalized by clathrin-mediated endocytosis and is trafficked to the host cell nucleus. IL-33 deletion severely alters the macrophage response to injury and reduces functional recovery in a mouse model of acute skeletal muscle injury. Importantly, delivery of IL-33+ MBV reduced M1-like macrophages and increased force generation. Together, these data show that MBV-associated IL-33 is required for effective repair of skeletal muscle following injury and may represent an extracellular tissue homeostasis signaling molecule
Recommended from our members
Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides
Tissue engineering materials play a key role in how closely the complex architectural and functional characteristics of native healthy tissue can be replicated. Traditional natural and synthetic materials are superseded by bespoke materials that cross the boundary between these two categories. Here we present hydrogels that are derived from decellularised extracellular matrix and those that are synthesised from de novo α-helical peptides. We assess in vitro activation of murine macrophages to our hydrogels and whether these gels induce an M1-like or M2-like phenotype. This was followed by the in vivo immune macrophage response to hydrogels injected into rat partial-thickness abdominal wall defects. Over 28 days we observe an increase in mononuclear cell infiltration at the hydrogel-tissue interface without promoting a foreign body reaction and see no evidence of hydrogel encapsulation or formation of multinucleate giant cells. We also note an upregulation of myogenic differentiation markers and the expression of anti-inflammatory markers Arginase1, IL-10, and CD206, indicating pro-remodelling for all injected hydrogels. Furthermore, all hydrogels promote an anti-inflammatory environment after an initial spike in the pro-inflammatory phenotype. No difference between the injected site and the healthy tissue is seen after 28 days, indicating full integration. These materials offer great potential for future applications in regenerative medicine and towards unmet clinical needs
Macrophage phenotype in response to ECM bioscaffolds
Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNÎł + LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers
Matrix-Bound Nanovesicles: The Effects of Isolation Method upon Yield, Purity, and Function
Identification of matrix-bound nanovesicles (MBV) as ubiquitous components of the extracellular matrix (ECM) raises questions regarding their biologic functions and their potential theranostic application. Unlike liquid-phase extracellular vesicles (e.g., exosomes), MBV are tightly bound to the ECM, which makes their isolation and harvesting more challenging. The indiscriminate use of different methods to harvest MBV can alter or disrupt their structural and/or functional integrity. The objective of the present study was to compare the effect of various MBV harvesting methods upon yield, purity, and biologic activity. Combinations of four methods to solubilize the ECM (collagenase [COL], liberase [LIB], or proteinase K [PK] and nonenzymatic elution with potassium chloride) and four isolation methods (ultracentrifugation, ultrafiltration [UF], density barrier, and size exclusion chromatography [SEC]) were used to isolate MBV from urinary bladder-derived ECM. All combinations of solubilization and isolation methods allowed for the harvesting of MBV, however, distinct differences were noted. The highest yield, purity, cellular uptake, and biologic activity were seen with MBV isolated by a combination of liberase or collagenase followed by SEC. The combination of proteinase K and UF was shown to have detrimental effects on bioactivity. The results show the importance of selecting appropriate MBV harvesting methods for the characterization and evaluation of MBV and for analysis of their potential theranostic application
Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodiumâglucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with reninâangiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particlesâ
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis
BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms
Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodiumâglucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with reninâangiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Should Sickle Cell Trait Be a Contraindication to Breast Reconstruction?âA Case Series Analysis
BackgroundâWhile sickle cell disease has long been considered a contraindication to breast free flap reconstruction, there have been less definitive decisions about the impact of sickle cell trait on these procedures. We sought to analyze the patients with sickle cell trait who underwent free deep inferior epigastric perforator (DIEP) flap and pedicled latissimus dorsi (LD) flap at a single institution to determine the reconstructive outcomes.
MethodsâPatients with sickle cell trait who underwent breast free DIEP and pedicled LD reconstruction from 2007 to 2021 at a single institution by the lead surgeon were analyzed for demographics and surgical outcomes.
ResultsâFour patients were identified as having sickle cell trait and having undergone a breast flap reconstruction. The average age of the patients was 54 years, median body mass index was 25, and past medical history was notable for one patient being a current smoker, and one patient having hypertension. Two patients received a unilateral free DIEP flap, one received a bilateral free DIEP flap, and one received a unilateral pedicled LD flap for a total of five flaps in four patients. Three of the patients received prior hormone therapy, one received prior radiation therapy, and one received prior chemotherapy. There were no instances of flap failure, vessel thrombosis, pulmonary embolism, or deep venous thrombosis. One patient experienced wound dehiscence.
ConclusionâIn this case series we present four patients with sickle cell trait who successfully underwent breast flap reconstruction without any instances of flap or systemic thrombosis. More work is needed to determine how to pre- and postoperatively optimize patients with sickle cell trait for favorable breast flap reconstruction outcomes