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Abstract 

Macrophage presence and phenotype are critical determinants of the healing response 

following injury.  Downregulation of the pro-inflammatory macrophage phenotype has been 

associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but 

phenotypic characterization of macrophages has typically been limited to small number of non-

specific cell surface markers or expressed proteins.  The present study determined the response 

of both primary murine bone marrow derived macrophages (BMDM) and a transformed human 

mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used 

ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM).  

Quantified cell responses included gene expression, protein expression, commonly used cell 

surface markers, and functional assays. Results showed that the phenotype elicited by ECM 

exposure (MECM) is distinct from both the classically activated IFNγ + LPS phenotype and the 

alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages 

responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced 

similar, yet distinct phenotypic profiles.  The results of this study not only characterized an 

MECM phenotype that has anti-inflammatory traits  but also showed the risks and challenges of 

making conclusions about the role of macrophage mediated events without consideration of 

the source of macrophages and the limitations of individual cell markers.  
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1. Introduction: 

Biologic scaffold materials composed of extracellular matrix (ECM) have been used in both 

preclinical and clinical studies to facilitate the functional reconstruction of soft tissues including 

the  esophagus [1], skeletal muscle [2], and myocardium [3], among others [4-6].  Results of such 

studies have varied from excellent to unacceptable [7], and the reasons for disparate results have 

been attributed to variables such as the methods used to  decellularize source tissues [8, 9],  the 

use of chemical crosslinking agents that inhibit scaffold degradation [10], and other factors [11, 

12].  Arguably the most important mechanism by which ECM bioscaffolds influence tissue 

remodeling and functional outcome is the modulation of macrophage phenotype [13].  In fact, 

the ratio of M2-like/MIL-4 (regulatory/anti-inflammatory) to M1-like/MIFN+LPS (pro-inflammatory) 

macrophages has been shown to be a predictor of favorable outcomes in multiple studies [14-

17]. 

Macrophages have long been recognized as phagocytes with pro-inflammatory and cytotoxic 

functions.  However, it is now understood that these cells also play essential roles in the 

resolution of inflammation [18, 19], normal tissue development [20], and in blastemal-based 

epimorphic regeneration in species such as the axolotyl [21]. These “non-classical” macrophage 

activities are increasingly tied to shifts in the balance of M1:M2 macrophages participating in the 

host inflammatory reaction. While the description of macrophages as having an M1 or M2 

phenotype is operationally simple and facilitates discussion, supra-physiologic amounts of 

signaling molecules such as cytokines, toll-like receptor agonists, and growth factors have been 

used in-vitro to induce these extremes of pro-inflammatory or anti-inflammatory phenotype [22-



24]. However, such conditions do not mimic the in-vivo complexity of macrophage activation. In 

fact, virtually any stimulus will likely elicit a macrophage phenotype that exists somewhere 

between the extremes.  

The macrophage response to biomaterials is a critical predictor of downstream success or failure 

with respect to clinical outcomes. Though there is now widespread recognition of the 

heterogeneity and plasticity of macrophage phenotype, most studies evaluating / describing the 

macrophage response to a biomaterial have included only single-marker methods followed by 

conclusive statements regarding cell phenotype. The present manuscript reviews the 

macrophage response to biologic scaffold materials, particularly those derived from mammalian 

extracellular matrix.  

Given the diversity and broad scope of endogenous signaling molecules resident within 

extracellular matrix (e.g., growth factors, cytokines, cryptic peptides and miRNA), and the 

widespread clinical use of ECM bioscaffolds in tissue reconstruction, the “Mecm” phenotype is 

characterized in the present study. Recognizing the limitations of only a single cell property as a 

defining identifier of macrophage phenotype, several parameters are evaluated including 

transcription factor profile, gene expression, protein expression, cell surface markers and 

functional properties. ECM bioscaffolds derived from two separate tissue sources (porcine small 

intestine and urinary bladder) are used to activate two macrophage populations that are 

commonly used for such studies: primary mouse bone marrow derived macrophages and THP-1 

cells (a human mononuclear cell line). To further evaluate macrophage responses to ECM 

signaling molecules, the activation state of the cells at the time of ECM stimulation is considered. 



Specifically, both naive macrophages and macrophages that have been activated with IFNγ+LPS 

are used in the present study. 

2. Results 

The terminology used to describe various states of macrophage activation (often referred to as 

“polarization”) has contributed to potentially misleading conclusions regarding the role of 

macrophages in various physiologic and pathologic processes.  For example, macrophages have 

been identified as M1 (pro-inflammatory) or M2 (anti-inflammatory), or given labels such as 

“regulatory” based upon selected surface markers or associated effector molecules.  

Recommendations for standard nomenclature based upon definition of the activator were 

published in 2014 [25], and this terminology will be used herein whenever possible (e.g., MIFN+LPS 

and MIL-4).  Macrophages stimulated with solubilized extracellular matrix (ECM) will be 

designated as MECM (MUBM-ECM and MSIS-ECM). 

2.1 MECM has a distinct gene expression profile  

Human THP-1 monocytes and mouse bone marrow (BMDM) were differentiated into macrophages 

to generate an M phenotype. M macrophages were then treated for 24h with IFN+LPS to 

establish an MIFN+LPS phenotype, IL-4 to establish an MIL-4 phenotype, or either UBM-ECM or SIS-

ECM to establish an MECM (MUBM-ECM / MSIS-ECM) phenotype. In a separate experiment, M 

macrophages were challenged with IFN+LPS for 6 hours followed by a 24 hour treatment with 

UBM or SIS. Downstream analyses included: 1) Gene expression of 30 commonly investigated 

macrophage activation markers, surface markers, cytokines, transcription factors and metabolic 



markers; 2) Protein expression of the most highly regulated markers; and 3) macrophage function 

as assessed by phagocytosis and nitric oxide production (Supplementary figure1).   

Thirty commonly used macrophage markers of activation, including surface markers, cytokines, 

transcription factors, and metabolic markers were analyzed by qPCR to better understand the 

gene expression signature of treated macrophages. Gene expression data are displayed as a 

heatmap in Figure 1. Clear differences between the gene expression signature of THP-1 

macrophages and BMDM are shown. Exposure of THP-1 macrophages to IFN+LPS resulted in an 

increase in almost the entire gene panel, while changes following exposure to IL-4 were relatively 

mild. In contrast, exposure to either UBM-ECM or SIS-ECM degradation products resulted in only 

minor changes in gene expression (Figure 1A).  

Exposure of BMDM to IFN+LPS or IL-4 led to substantial changes in gene expression with 

contrasting profiles. The gene expression profile generated by exposure to UBM-ECM differed 

from that generated by exposure to SIS-ECM but there were areas of overlap. Notably, IFN+LPS 

and UBM-ECM treated BMDMs have a similar gene expression profile (Figure 1B).  

When THP-1 macrophages were challenged with IFN+LPS for 6 hours followed by exposure to 

UBM-ECM or SIS-ECM for an additional 24 hours, no major changes in gene expression were 

observed (Figure 1A). However, there was a significant change in the gene expression signature 

in BMDM (Figure 1B). In addition to the different response between the two macrophage 

populations, there were also clear differences between UBM-ECM and SIS-ECM treatment groups 

post-cytokine treatment. Both UBM-ECM and SIS-ECM treatment groups showed a decrease in 

the transcription factor gene expression cluster, particularly when the cells were pre-treated with 



IFN+LPS. Gene expression values were normalized to those of untreated macrophages (M). 

IFN+LPS activated macrophages were normalized to IFN+LPS followed by media treatment.  

Principal component analysis (PCA) was conducted to identify the dominant members of the 

transcriptional signature associated with the test groups for further evaluation of downstream 

protein expression. BMDM and THP-1 macrophages treated for 24 hours with cytokines or ECM 

degradation products were scored and visually clustered by PCA. For THP-1 macrophages, CD206, 

KLF4 and TGM2 were found to be the genes most associated with IL-4 activation, and TNF, 

STAT1 and IRF3 were associated with IFN+LPS activation (Figure 1C). The BMDM showed Fizz-1, 

KLF-4 and Arg1 as the most differentially expressed genes associated with IL-4 activation, and 

TNF, STAT1 and iNOS were the most highly regulated genes with IFN+LPS  activation (Figure 

1D). Genes that are commonly cited in the literature as macrophage activation markers, and the 

genes identified in PCA data output, were chosen for further downstream protein analyses.  

2.2 ECM degradation products and IL-4 promote similar protein expression profile 

Protein expression was evaluated by western blot analysis and immunofluorescent labeling. THP-

1 macrophages activated for 24 hours with UBM-ECM or SIS-ECM induced TGM2 and CD206 (MIL-

4 associated markers). However, no changes were noted in the MIFN+LPS associated marker TNFα 

and only a mild change in iNOS expression with SIS-ECM activation.  CD11b was used as a pan 

macrophage control marker for THP-1 macrophages (Figure 2A). Macrophages activated with 

IFN+LPS followed by exposure to ECM degradation products showed a similar trend to the 24 

hours treatment groups. When THP-1 macrophages were exposed to either UBM-ECM or SIS-

ECM following activation with INF+LPS, both ECMs induced TGM2 and CD206 positive cells. 



UBM-ECM and SIS-ECM both caused a reduction in iNOS expression by THP-1 macrophages that 

had been activated with IFN LPS. However, both UBM-ECM and SIS-ECM induced TNF positive 

cells when macrophages were activated with IFN+LPS (Figure 2A).  

BMDM show Fizz-1 and Arg1 (MIL-4 associated markers in mice) expression after activation with 

UBM-ECM and SIS-ECM for 24 hours. In addition, BMDM were positive for the MIFN+LPS associated 

marker TNF after exposure to ECM degradation products, but were not positive for iNOS.  F4/80 

was used as a pan macrophage control marker for BMDM (Figure 2C). Similarly, macrophages 

activated with IFN+LPS followed by treatment with ECM degradation products showed 

enhanced Fizz-1 expression, but not enhanced Arg1 expression. Interestingly, both UBM-ECM 

and SIS-ECM inhibited iNOS expression and enhanced TNF expression after pre-activation with 

IFN+LPS.  

Western blot analysis was used to determine relative protein expression of the specified genes 

that showed the greatest change in activity in response to specific treatments. For the MIFN+LPS 

associated markers, the THP-1 macrophages activated for 24 hours with UBM-ECM or SIS-ECM 

showed that the amount of STAT1 was comparable to that of M and MIL-4 cells, and significantly 

lower than that of the MIFN+LPS cells. No changes were noted in TNF and IRF3 (Figure 2B). 

For the MIL-4 associated markers, TGM2 and KL4 protein expression were increased after IL-4 

activation. No significant changes were found between the MECM groups and the M and MIFN+LPS 

phenotypes. When macrophages were first activated IFN+LPS, followed by exposure to SIS-ECM, 

a decrease in KLF4 protein expression was noted (Figure 2B). 



BMDM exposed to UBM-ECM or SIS-ECM degradation products show similar findings to THP-1 

macrophages with some small differences. For example, BMDM activated by 24h exposure to 

UBM-ECM showed increased expression of STAT1 to a level similar to that of the MIFN+LPS 

treatment group, which was not seen in the THP-1 groups. However, in both populations of 

macrophages, no changes were noted in TNF expression levels (Figure 2D). Notably, an increase 

in iNOS expression was found only in the BMDM MIFN+LPS group. When macrophages were 

activated with IFN+LPS followed by UBM or SIS treatment, no changes were noted in iNOS and 

TNF expression levels when compared to media controls. However, SIS-ECM treatment 

inhibited STAT1 protein expression for the group first activated by IFN+LPS. For the MIL-4 

associated markers, MIL-4 significantly increased Arg1 protein expression, and SIS-ECM 

significantly increased Fizz-1 expression. No changes were noted in KLF4 (Figure 2D). -actin was 

used as a loading control and the colorimetric intensity of the bands for each treatment group 

was standardized to its respective β-actin band intensity. Quantification of immunolabeling 

images using CellProfiler software supported the qualitative interpretation of the results 

(Supplementary figure 2A-B). Densitometry evaluation of each blot can be found in 

Supplementary figure 3A-D.  

2.3 ECM degradation products affect macrophage functional activity  

THP1 macrophages showed low levels of phagocytosis across all tested conditions. Cytokine 

treatment did not significantly enhance the phagocytic function of THP1 macrophages. However, 

UBM-ECM activation alone caused an increase in THP1 phagocytosis (Figure 3A). BMDM showed 

measurable basal phagocytic function. Phagocytosis by BMDM increased with IFN+LPS and no 



notable changes were detected following IL-4 activation (Figure 3B).  Similar to the THP-1 

macrophages, UBM-ECM activation resulted in an increase in phagocytosis. In both BMDM and 

THp1 macrophages, activation with IFN+LPS for 6h prior to 24h exposure to UBM-ECM or SIS-

ECM did not affect the cells’ phagocytic ability. THP1 macrophages did not produce nitric oxide 

(NO) in response to IFN+LPS or IL-4 stimulus. However, UBM treatment did show a slight 

increase in NO production. Interestingly, THP-1 macrophages challenged with IFN+LPS followed 

by UBM-ECM exposure did show a significant increase in NO production, but such changes were 

not observed with SIS-ECM exposure (Figure 3C). In BMDM, NO production increased following 

IFN+LPS. BMDM exposed to SIS or UBM alone had a slight increase in NO production. IFN+LPS 

activation followed by either UBM-ECM or SIS-ECM enhanced or prolonged cytokine effects 

compared to media controls (Figure 3D).  

3. Material and Methods  

The present study determined macrophage phenotype following exposure to degradation 

products derived from ECM bioscaffolds. Two macrophage populations commonly used in in-

vitro studies examined: human THP-1 monocytes [American Type Culture Collection (ATCC)] 

and murine bone marrow derived macrophages. A comprehensive characterization of 

macrophage cell surface markers, gene expression, protein content, phagocytic capacity, and 

nitric oxide production was conducted. Based on previous studies, more than 30 different 

surface markers, transcription factors, cytokines and metabolic markers were selected to 

evaluate the ECM-induced macrophage phenotype, termed MECM. In addition, the  production 

of proteins selected based upon PCA analysis was determined by western blotting and 

immunolabeling.  Lastly, macrophage phagocytic activity and nitric oxide production post-



treatment was determined. The variety of methods used to assess the changes in macrophage 

phenotype are described below.  

3.1 Preparation of ECM Bioscaffolds 

Porcine urinary bladders from market weight (approximately 110 kg) animals were acquired from 

Tissue Source, LLC. (Lafayette, Indiana, USA). Urinary bladder matrix (UBM-ECM) was prepared 

by decellularization using mechanical and chemical methods as previously reported [26]. Briefly, 

the tunica serosa, tunica muscularis externa, tunica submucosa, and tunica muscularis mucosa 

were mechanically removed. The luminal urothelial cells of the tunica mucosa were dissociated 

by washing with sterile water. The remaining tissue consisting of basement membrane and 

subjacent tunica propria of the tunica mucosa was decellularized by agitation in 0.1% peracetic 

acid with 4% ethanol for 2 hours at 300 rpm. The tissue was then extensively rinsed with 

phosphate-buffered saline (PBS) and sterile water. The UBM-ECM was then lyophilized and milled 

into particulate form using a Wiley Mill with a #60 mesh screen. 

Preparation of SIS-ECM has been previously described [27]. Briefly, jejunum was harvested from 

market weight pigs and split longitudinally. The superficial layers of the tunica mucosa were 

mechanically removed. Likewise, the tunica serosa and tunica muscularis externa, tunica 

submucosa, and tunica muscularis mucosa were mechanically removed, leaving the tunica 

submucosa and basilar portions of the tunica mucosa. Decellularization and disinfection of the 

tissue occurred by agitation in 0.1% peracetic acid with 4% ethanol for 2 hours at 300 rpm. The 

tissue was then extensively rinsed with phosphate-buffered saline (PBS) and sterile water. The 

SIS-ECM was then lyophilized and milled into particulate form using a Wiley Mill with a #60 mesh 

screen. 



3.2 Derivation of ECM Degradation Products 

UBM-ECM and SIS-ECM were enzymatically degraded as previously described [28] with pepsin 

from porcine stomach mucosa (MP Biomedicals)  by mixing lyophilized, powdered UBM-ECM 

(10 mg/mL) and pepsin (1 mg/mL) in 0.01 M HCl (pH 2.0). This solution was stirred at room 

temperature for 48 hours. After stirring, the UBM slurry was neutralized to a pH of 7.4 in 1× PBS 

(137 mM NaCl, 2.7 mM KCl, 12 mM Phosphate, Fisher Scientific, Waltham, MA) to inactivate the 

pepsin. 

3.3 Macrophage culture 

THP-1 human monocytes (TIB-202™) were obtained from the American Tissue Culture Collection 

(ATCC, Manassas, VA) and maintained in RPMI, 10% FBS, 1% penicillin/streptomycin, and 50 uM 

of 2-Mercaptoethanol in a humidified atmosphere at 37 °C with 5% CO2. Two million THP-1 cells 

were plated with 320 nM phorbol 12-myristate 13-acetate (PMA) to induce differentiation into 

macrophages. After 24 hours adherent macrophages were washed in PBS and placed in fresh 

media, followed by 72 hours incubation in fresh media to acquiesce. This protocol has been 

shown to result in a phenotype that is nearly indistinguishable from human peripheral blood 

macrophages [28]. 

Murine bone marrow derived macrophages (BMDM) were isolated as previously described [29]. 

Briefly, the tibia and femur were isolated from adult, female 6–8-week old C57bl/6 mice 

obtained from Jackson Laboratories (Bar Harbor, ME). Bones were kept on ice and rinsed in a 

sterile dish containing macrophage complete medium consisting of DMEM (Gibco, Grand Island, 

NY), 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA), 10% L929 supernatant, 0.1% beta-

mercaptoethanol (Gibco), 100 U/ml penicillin, 100 ug/ml streptomyocin, 10 mM non-essential 



amino acids (Gibco), and 10 mM hepes buffer. In a sterile environment, the ends of each bone 

were transected and the marrow cavity flushed with complete medium using a 30-gauge 

needle. Harvested cells were washed and plated at 106 cell/ml, and allowed to differentiate into 

macrophages for 7 days at 37 °C, 5% CO2 with complete media changes every 48 h resulting in 

naïve macrophages. 

3.4 Macrophage activation 

Macrophages were activated for 24 hours with one of the following: (1) 20 ng/ml IFNγ and 

100 ng/ml LPS to promote an MIFN+LPS phenotype, (2) 20 ng/ml IL-4 to promote an MIL-4 

phenotype, or [30] 250 ug/ml of UBM-ECM, or SIS-ECM to promote an MECM phenotype. An 

equivalent concentration of pepsin was used as control buffer. In a separate group, macrophages 

were just activated with IFN+LPS for 6 hours, as described above, and then exposed to UBM-

ECM or SIS-ECM for 24 hours. After the incubation period at 37 °C, cells were washed with sterile 

PBS and fixed with 2% paraformaldehyde for immunolabeling or harvested with TRIZOL/RIPA 

buffer for RNA/Protein assessment, respectively. Cells were also assessed for phagocytosis and 

nitric oxide production.   

3.5 RNA isolation and cDNA synthesis 

Cellular RNA was isolated using the miRNeasy Mini kit (Qiagen, Valencia, CA) according to the 

manufacturer's instructions. Reverse transcriptase from RNA to cDNA was performed via high 

capacity RT kit (ABI, Foster City, CA) according to the manufacturer's instructions. 

 

 

 



3.6 quantitative polymerase chain reaction (PCR) 

Sybr Green gene expression assays (ABI, Foster City, CA) were used to determine the relative 

expression levels of THP-1: iNOS, TNF, STAT1, STAT2, STAT5, IRF3, IRF4, IRF5, IL1RN, CD206, 

TGM2, STAT3, STAT6, KLF4, KLF6, PPAR. BFKBF3, GLUT1, HIF1a, PGK1, LDHA, HK3, PDK4, RPIA, 

PPAR, G6PC3 and PCK2.  For BMDM gene expression levels: inos, tnf, stat1, stat2, stat5, irf3, 

irf4, irf5, il1rn, cd206, tgm2, stat3, stat6, klf4, klf6, fizz-1, arg1, bfkbf3, glut1, hif1a, hk3, pgk1, 

pdk4, rpia, ldha, pck1, pck2, g6pc3 and ppar . Results were analyzed by the ΔΔCt method using 

β-glucuronidase (β -GUS) control for human, and Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) for mouse, to normalize the results. Fold change was calculated taking untreated as the 

baseline.  Results are displayed in a heat map format created by Java Treeview. 

Gene description can be found in Table 1:  

Table 1: 

Name Gene Name Description 

ARG1 arginase 1 

Arginase catalyzes the hydrolysis of arginine to ornithine and urea. 
At least two isoforms of mammalian arginase exist (types I and II) 
which differ in their tissue distribution, subcellular localization, 
immunologic crossreactivity and physiologic function. Arginase is 
induced by Th2-type cytokines, which convert arginine into ornithine 
and subsequently into polyamines and proline [31, 32]. 

CD206 
mannose receptor, C 
type 1 

Mannose receptor C type 1 is a type I membrane receptor that 
mediates the endocytosis of glycoproteins by macrophages. The 
recognition of complex carbohydrate structures on glycoproteins is 
an important part of several biological processes, including cell-cell 
recognition, serum glycoprotein turnover, and neutralization of 
pathogens. It has been shown that CD206, the macrophage 
mannose receptor, is up-regulated following interleukin (IL)-4 
stimulation, which led to the advent of the concept of alternative 
activation of macrophages [31, 33]. 

Fizz-1 resistin like alpha 

Alternatively activated macrophages are characterized by abundant 
expression of mannose receptor (MR/CD206), CD163, arginase, 
chitinase-like molecules (Ym-1/2), and resistin-like molecule α 
(RELMα/Fizz-1) upon stimulation with Th2-type cytokines such as IL-
4 and IL-13 [31, 34]. 



 

G6PC3 
glucose-6-phosphatase 
catalytic subunit 3 

Glucose-6-phosphatase catalytic subunit 3 is the catalytic subunit of 
glucose-6-phosphatase (G6Pase). In a murine G6PC3 double 
knockout model of congenital neutropenia syndrome 4, G6PC3 (-/-) 
macrophages have impaired respiratory bursts, chemotaxis, calcium 
flux, and phagocytosis as well as lower glucose uptake and low 
levels of G6P, lactate, and ATP. In addition, trafficking of G6PC3 (-/-) 
macrophages during an inflammatory response in vivo was impaired 
[31, 35]. 

GLUT1 
solute carrier family 2 
member 1 

GLUT1 is a major glucose transporter in the mammalian blood-brain 
barrier. Glucose is a critical component in the proinflammatory 
response of macrophages [31, 36]. 

HIF1 
hypoxia inducible factor 
1 alpha subunit 

Hypoxia-inducible factor-1 is a heterodimer composed of an alpha 
and a beta subunit. The HIF1α subunit, like 6-phosphofructo-2-
kinase, is involved in hypoxia-mediated glycolytic flux leading to pro-
inflammatory macrophage activity. HIF-1α is induced by NFkB and 
mediates transcription of iNOS and subsequent production of nitric 
oxide [31, 37]. 

HK3 hexokinase 3 

Hexokinases phosphorylate glucose to produce glucose-6-
phosphate, the first step in most glucose metabolism pathways. 
Studies have shown that HK3 is significantly upregulated in 
macrophages after treatment with LPS [31, 38]. 

IL1r 
interleukin 1 receptor 
antagonist 

Interleukin 1 receptor antagonist inhibits the activities of interleukin 1 
alpha (IL1A) and beta (IL1B), and modulates a variety of interleukin 1 
related immune and inflammatory responses. Studies suggest that 
IL-1 alpha, IL-3, IL-4 and GM-CSF may play important roles in 
regulating monocyte IL-1ra production [31, 39]. 

   

iNOS nitric oxide synthase 2 

Nitric oxide synthase is expressed in liver and is inducible by a 
combination of lipopolysaccharide and certain cytokines including 
IFN-alpha or LPS. NOS2 degrades arginine into OH-arginine and 
then nitric oxide (NO). NO is a reactive free radical which acts as a 
biologic mediator in several processes, including neurotransmission 
and antimicrobial and antitumoral activities [31, 32]. 

IRF3 
interferon regulatory 
factor 3 

Like IRF5, interferon regulatory factor 3 is found in an inactive 
cytoplasmic form that upon serine/threonine phosphorylation forms a 
complex with CREBBP.  Signaling through the TRIF adaptor 
pathway activates IRF3, leading to the expression and secretion of 
type I interferon, such as IFNα and IFNβ [22, 31]. 

IRF4 
interferon regulatory 
factor 4 

Interferon regulatory factor 4 is found in an inactive cytoplasmic form 
that upon serine/threonine phosphorylation forms a complex with 
CREBBP. IRF4 has been identified as a key transcription factor that 
controls M2 macrophage polarization [31, 40]. 

IRF5 
interferon regulatory 
factor 5 

Interferon regulatory factor 5 is found in an inactive state in the 
cytoplasm. Upon serine/threonine phosphorylation, IRF5 forms a 
complex with CREBBP. IRF5 acts as a molecular switch influencing 
whether macrophages promote or inhibit inflammation. IRF5 is 
required for optimal Akt2 activation, which increases expression of 
glycolytic pathway genes and HIF1A as well as pro-inflammatory 
cytokines and M1 polarization [31, 41]. 



KLF4 Kruppel like factor 4 

Kruppel like factor 4 is a zinc finger protein that acts as a 
transcriptional activator and functions as a tumor suppressor. It has 
been demonstrated that IL-4-induced macrophage polarization 
involves induction of STAT6 and Krüppel-like factor 4 (KLF4), which 
induce each other and promote M2 polarization [31, 42]. 

KLF6 Kruppel like factor 6 

Kruppel like factor 6 is a zinc finger protein that acts as a 
transcriptional activator and functions as a tumor suppressor. KLF6 
has been implicated in the control of macrophage speciation. In 
human and mouse macrophages, it has been shown that pro-
inflammatory (M1-like) stimuli such as LPS and IFN-gamma lead to 
robust KLF6 expression, while M2-like stimuli such as IL-4 and IL13 
suppressed KLF6 [31, 43]. 

LDHA 
lactate dehydrogenase 
A 

Lactate dehydrogenase A catalyzes the conversion of L-lactate and 
NAD to pyruvate and NADH in the final step of anaerobic glycolysis. 
HIF-1α induces expression of lactate dehydrogenase, which 
catalyzes lactate production from pyruvate, thereby limiting the 
production of acetyl-CoA for the TCA cycle [31, 44]. 

PCK1 
phosphoenolpyruvate 
carboxykinase 1 

Phosphoenolpyruvate carboxykinase 1 is a main control point for the 
regulation of gluconeogenesis. This cytosolic enzyme, along with 
GTP, catalyzes the formation of phosphoenolpyruvate from 
oxaloacetate, with the release of carbon dioxide and GDP. In 
adipose tissue macrophages derived from obese mice are 
characterized by enhanced expression of inflammatory cytokines, 
chemokines and mediators such as TNFα, IL-6, IL-8, CCL2, IL-1β, 
and iNOS--all factors that suppress insulin signaling and de-repress 
downstream gluconeogenesis via activation of glucose-6-
phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 
(PCK1) [31, 45]. 

PCK2 
phosphoenolpyruvate 
carboxykinase 2 

Phosphoenolpyruvate carboxykinase 2 is a mitochondrial enzyme 
that catalyzes the conversion of oxaloacetate to 
phosphoenolpyruvate in the presence of guanosine triphosphate 
(GTP). Metabolic modules have been shown to directly influence 
macrophage polarization [31, 46]. 

PDK4 

pyruvate 
dehydrogenase kinase 
4 

Pyruvate dehyrogenase kinase 4 is a member of the PDK/BCKDK 
protein kinase family. PDK4 is a mitochondrial protein with a histidine 
kinase domain. It has been shown that strong decreases in the 
expression of PDK4 leads to an increase in metabolism, particularly 
the conversion of glucose to acetyl-CoA, thus improving substrate 
availability for fatty acid synthesis [31, 47].  

PFKFB3 

6-phosphofructo-2-
kinase/fructose-2,6-
biphosphatase 3 

6-phosphofructo-2-kinase belongs to a family of bifunctional proteins 
that are involved in both the synthesis and degradation of fructose-
2,6-bisphosphate, a regulatory molecule that controls glycolysis in 
eukaryotes. Hypoxia potentiates macrophage glycolytic flux 
correlating with upregulation of pro-inflammatory activity in a manner 
that is dependent on 6-phosphofructo-2-kinase [31, 48]. 

PGK1 
phosphoglycerate 
kinase 1 

Phosphoglycerate kinase 1 is a glycolytic enzyme that catalyzes the 
conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate. 
Macrophages demonstrate significantly higher expressions of the 
gene PGK1 under normoxia than monocytes [31, 49]. 



PPAR 
peroxisome proliferator 
activated receptor delta 

Peroxisome proliferator activated receptor delta is a member of the 
peroxisome proliferator-activated receptor (PPAR) subfamily of 
nuclear receptors.  PPARs are nuclear hormone receptors that bind 
peroxisome proliferators and control the size and number of 
peroxisomes produced by cells. PPARs mediate a variety of 
biological processes, and may be involved in the development of 
several chronic diseases, including diabetes, obesity, 
atherosclerosis, and cancer. Studies have established a role for 
PPARδ in the regulation of macrophage lipid metabolism and 
inflammation [31, 50]. 

PPAR 

peroxisome proliferator 
activated receptor 
gamma 

Peroxisome proliferator activated receptor gamma is a member of 
the peroxisome proliferator-activated receptor (PPAR) subfamily of 
nuclear receptors. PPARs form heterodimers with retinoid X 
receptors (RXRs) and these heterodimers regulate transcription of 
various genes. Studies from the Glass and Seed laboratories 
indicated that pharmacological activation of PPARγ attenuated 
expression of macrophage inflammatory programs. Studies have 
established a role for PPARγ in the regulation of macrophage lipid 
metabolism and inflammation [31, 50]. 

RPIA 
ribose 5-phosphate 
isomerase A 

Ribose 5-phosphate isomerase A is an enzyme that catalyzes the 
reversible conversion between ribose-5-phosphate and ribulose-5-
phosphate in the pentose-phosphate pathway. In granulocyte-
macrophage colongy stimulating factor (GM-CSF) activated murine 
bone marrow derived macrophages, RPIA was abundantly 
expressed in comparison to macrophages activated with 
macrophage colony stimulating factor (M-CSF). Metabolic processes 
were significantly different between these two populations with GM-
CSF stimulated macrophages showing enhanced glycolytic capability 
which may correspond with their pro-inflammatory response [31, 51]. 

STAT1 

signal transducer and 
activator of 
transcription 1 

Upon stimulation with cytokines and growth factors, STAT family 
members are phosphorylated to form homo- or heterodimers that 
translocate to the cell nucleus and act as transcription activators. 
STAT1, in particular, plays a pivotal role in the 
differentiation/maturation process of monocytes as an early 
transcription factor initially activated by adherence and then able to 
modulate the expression of functional genes, such as ICAM-1 and 
FcgammaRI. IL-4 and IFN-γ, together with TLR stimulation, 
upregulate SOCS1 (31) and SOCS3 (32), which inhibit STAT1 and 
STAT3, respectively [22, 31, 52]. 

STAT2 

signal transducer and 
activator of 
transcription 2 

Upon stimulation with cytokines and growth factors, STAT family 
members are phosphorylated to form homo- or heterodimers that 
translocate to the cell nucleus and act as transcription activators. In 
response to type-1 IFNs (-α and -β), STAT1 and STAT2 are 
activated altering macrophage polarization [31, 37]. 

STAT3 

signal transducer and 
activator of 
transcription 3 

Upon stimulation with cytokines and growth factors, STAT family 
members are phosphorylated to form homo- or heterodimers that 
translocate to the cell nucleus and act as transcription activators. IL-
4 and IFN-γ, together with TLR stimulation, upregulate SOCS1 (31) 
and SOCS3 (32), which inhibit STAT1 and STAT3, respectively [22, 
31]. 



 

3.7 Macrophage Immunolabeling  

To determine macrophage surface marker expression profiles, activated cells were fixed with 2% 

paraformaldehyde (PFA) for 45 minutes. Primary antibodies used for immunofluorescent labeling 

on BMDM were: (1) monoclonal anti-F4/80 (Abcam, Cambridge, MA) at 1:200 dilution for a pan-

macrophage marker, (2,3) polyclonal anti-iNOS (Abcam, Cambridge, MA) at 1:100 dilution and 

anti-TNF (Abcam, Cambridge, MA) at 1:1000  for an M1-like marker, and (4,5) polyclonal anti-

Fizz1 (Peprotech, Rocky Hill, NJ) and anti-arg1 (Abcam, Cambridge, MA) at 1:100 dilution for M2-

like markers. Primary antibodies used on THP-1 were: (1) monoclonal anti-CD11b (Abcam, 

Cambridge, MA) at 1:200 dilution for a pan-macrophage marker, (2,3) polyclonal anti-iNOS 

(Abcam, Cambridge, MA) at 1:100 and anti-TNF (Abcam, Cambridge, MA) at 1:1000 for an M1-

like marker, and (4,5) polyclonal anti-TGM2 (Abcam, Cambridge, MA) and anti-CD206 (Abcam, 

Cambridge, MA) at 1:1000 dilution for M2 markers. Cells were incubated in blocking solution 

STAT5 

signal transducer and 
activator of 
transcription 5 

Upon stimulation with cytokines and growth factors, STAT family 
members are phosphorylated to form homo- or heterodimers that 
translocate to the cell nucleus and act as transcription activators. 
STAT5 has been shown to play a role in monocyte activation by 
LPS. STAT5 is a target for IL-10 and Dex inhibitition of COX-2 
expression in activated monocytes [31, 53]. 

STAT6 

signal transducer and 
activator of 
transcription 6 

Upon stimulation with cytokines and growth factors, STAT family 
members are phosphorylated to form homo- or heterodimers that 
translocate to the cell nucleus and act as transcription activators.  It 
has been demonstrated that IL-4-induced macrophage polarization 
involves induction of STAT6 and Krüppel-like factor 4 (KLF4), which 
induce each other and promote M2 polarization [31, 42]. 

TGM2 transglutaminase 2 

Transglutaminases are enzymes that catalyze the crosslinking of 
proteins by epsilon-gamma glutamyl lysine isopeptide bonds. It has 
been shown that IL-4 activated cells can be characterised by 
increased expression of TGM2 [31, 54]. 

TNF tumor necrosis factor 

Tumor necrosis factor alpha is a proinflammatory cytokine that is 
mainly secreted by macrophages. Toll-like receptor binding induces 
the production of TNFα from macrophages that function to activate 
macrophages [31, 55]. 



consisting of PBS, 0.1% Triton-X, 0.1% Tween-20, 4% goat serum, and 2% bovine serum albumin 

to prevent non-specific binding for 1 h at room temperature. Blocking solution was removed and 

cells were incubated in primary antibodies for 16 h at 4 °C. After washing in PBS, cells were 

incubated in fluorophore-conjugated secondary antibodies (Alexa Fluor donkey anti-rat 488 or 

donkey anti-rabbit 488, Invitrogen, Carlsbad, CA) for 1 h at room temperature. After washing 

again with PBS, nuclei were counterstained with 4′6-diamidino-2-phenylindole (DAPI) prior to 

imaging. Images of three 20× fields were taken for each well using a live-cell microscope. Light 

exposure times for ECM-activated macrophages were standardized based upon cytokine-

activated macrophages (positive control). Exposure time was kept constant for each marker. 

CellProfiler (Broad Institute, Cambridge, MA, USA) was used to quantify images. 

3.8 Western blot 

Western blots were performed on treated macrophage cell lysates. Cell lysates were boiled at 

95 °C for 5 min and electrophoresed on 4-20% gradient acrylamide gels. Specifically, 10 ug of 

protein was loaded into each well. Separated proteins were transferred to Polyvinylidene 

difluoride (PVDF) membranes (Bio-rad) using a wet transfer set up. Following transfer, 

membranes were then blocked for 45 min with Pierce protein-free blocking buffer (Pierce 

Chemical, Rockford, IL) and incubated overnight with the following primary antibodies: iNOS, 

TNF-, STAT1, IRF3 CD206, TGM2, and KLF4, for THPI and iNOS, TNF-, STAT1, Arg1, Fizz-1 and 

KLF4 for BMDM. Membranes were washed three times for 15 min in 1X PBS, before and after 

they were incubated with appropriate secondary antibody. The washed membranes were 

exposed to chemiluminescent substrate (Bio-Rad) and then visualized using chemidoc touch 



instrument (Bio-Rad). Image Densitometry was evaluated using the shareware ImageJ 

(http://rsbweb.nih.gov/ij/index.html). 

3.9 Nitric Oxide Quantification 

Bone marrow macrophages and THP-1 cells were cultured and treated as previously described 

above. Following treatment, the supernatant from the wells was transferred to another plate and 

frozen at -80°C. The supernatant was thawed then 50 μL was added to another plate. 50 μL of 

standards consisting of sodium nitrite from 100 μM to 1.56 μM in a 1:2 serial dilution were added 

to the plate. The wells were treated with 50 μL of 1% sulfanilamide in 5% phosphoric acid for 10 

minutes. Then 50 μL of 0.1% N-1-napthylethylenediamine [NED] dihydrochloride in water was 

added for an additional 10 minutes. The wells were then read at 540 nm and compared to the 

standard curve. Readings were normalized to the amount of DAPI-stained cells in each well as 

quantified by Cell Profiler. 

3.10 Phagocytosis Assay 

Following activation, cells were incubated with Vybrant Phagocytosis Kit FITC-labeled E. Coli 

beads for 2 hours. Wells were then washed once with 1XPBS and fixed with 2% paraformaldehyde 

for 30 minutes. Wells were washed 3 times with 1X PBS then stained with DAPI for 10 minutes 

and washed again three times with 1X PBS. Wells were imaged using an automated Live Cell 

Scope and quantified for mean intensity of the cells using Cell Profiler software. Mean intensity 

averages were calculated as percent changes from M0 naïve macrophage controls. 

 

4. Discussion 

http://rsbweb.nih.gov/ij/index.html


The results of the present study show clearly that BMDM and THP-1 macrophages respond 

differently to the same stimulus.  The phenotype of these two macrophage populations 

following activation by an ECM scaffold can appear very similar or vastly different depending 

upon whether gene expression, protein expression, or surface markers are evaluated.  

Furthermore, although SIS-ECM and UBM-ECM have both been associated with constructive, 

functional tissue remodeling outcomes in both pre-clinical animal models and in clinical 

applications in man, the macrophage phenotype resulting from activation with each ECM is 

distinct from those elicited by activation with either IFNγ+ LPS or IL-4.  Finally, following 

activation by IFNγ + LPS, macrophages then exposed to degradation products of both ECM 

bioscaffolds show a marked downregulation of genes that are typically associated with an 

inflammatory profile.   

ECM bioscaffolds typically promote a favorable tissue remodeling response when used to treat 

various types of soft tissue injury.  This response includes the recruitment of endogenous stem 

cells, angiogenesis, and dampening of the inflammatory response. This pro-healing response 

has been attributed, in large part, to the effect of ECM on macrophage phenotype [8]. The 

objective of the present study was to comprehensively characterize the MECM phenotype. The 

source of macrophages used in this study; specifically, primary cells isolated from murine bone 

marrow (i.e., BMDM) and a transformed human mononuclear cell line (i.e., THP-1) are 

commonly used in studies to evaluate macrophage phenotype and behavior, and therefore the 

results are of interest to the field of macrophage biology [56, 57]. Since conclusions from such 

studies can have far-reaching implications, it is important to understand the effect of the 

source of macrophages upon study results.   



4.1 BMDM and THP-1 macrophages differentially respond to the same stimulus 

There was a clear difference between the response of BMDM and THP-1 macrophages to both 

canonical stimuli such as IFNy + LPS or IL-4 as well as to SIS-ECM and UBM-ECM degradation 

products. Gene expression analyses showed that THP-1 macrophages were not significantly 

affected by activation with IL-4, SIS-ECM, or UBM-ECM exposure, but there was a notable 

increase in most of the evaluated genes following activation by IFNγ+ LPS.  This response was in 

stark contrast to the BMDM gene expression signature that showed significant changes to all of 

the applied stimuli. We hypothesize that these changes are likely due to the endogenous 

differences between a cell line (i.e., THP-1) and primary cells (i.e., BMDM).   Another difference 

between the two macrophage populations was the difference in macrophage function following 

activation. THP-1 macrophages were associated with very little nitric oxide (NO) production and 

phagocytosis regardless of their stimulus, whereas BMDM showed an increase in NO production 

and phagocytic activity when stimulated with IFNy + LPS similar to the response one would expect 

in vivo following exposure to a pro-inflammatory stimulus.  

The mechanism(s) by which macrophages are able to phagocytose and produce nitric oxide are 

largely unknown. However, the activation state of macrophages and the effect on cell function 

has been described [58, 59] and suggests that an increase in ARG1 and decrease in iNOS gene 

expression levels (as seen in Figure 1) may lead to the decrease seen in phagocytic activity [58]. 

Overall, the “M1-like” macrophages are more associated with phagocytosis and nitric oxide 

production than their “M2-like” counterparts. The present study shows that the challenged MECM 

phenotype has reduced phagocytic activity (associated with “M2-like”) and an increase in nitric 



oxide production (associated with “M1-like”). This finding is further evidence of the complexity 

and plasticity of macrophages and the unique MECM phenotype compared to canonical controls.  

The collective findings of the present study suggest that the in vitro response of BMDM respond 

more similarly than THP1 cells with respect to the behavior observed by macrophages in 

preclinical animal models and clinical studies that have examined ECM-mediated tissue 

remodeling [10, 14].  Though there are multiple cell types utilized to investigate the in vitro 

macrophage behavior, THP-1 macrophages were chosen because of their widespread use in the 

immunology and regenerative medicine field [1-4]. The new data presented herein clearly show that 

the THP-1 derived macrophages have a restrictive phagocytic and nitric oxide production 

ability, thereby limiting “typical” macrophage functionality. There are also marked differences 

in gene expression when compared to BMDM. Future work may benefit from using the results 

reported herein as a comparative dada case for alternative cell types that may be used to 

evaluate macrophage behavior in-vitro. 

4.2 SIS-ECM and UBM-ECM induce similar but distinct macrophage phenotypes 

Both SIS-ECM and UBM-ECM have been associated with an increased bioscaffold-localized 

M2:M1 ratio in preclinical animal studies, and a constructive, functional tissue remodeling 

response, but the macrophage phenotype has typically been characterized based upon a small 

number of cell markers [62, 63]. In the present study, gene expression analysis of resting BMDM 

showed that the macrophage response to SIS-ECM is similar to that of IL-4 activation. BMDM 

exposed to UBM-ECM, in contrast, show a gene expression profile that is similar to that of the 

MIFNy+LPS phenotype. Several studies have investigated the mechanism by which macrophages are 



activated in response to various stimuli, including the mechanism(s) of response to the canonical 

IFN + LPS stimulation (MIFN+LPS) [64-72]. Following IFN+LPS stimulation, two pathways respond 

simultaneously. While LPS activates the TLR4 receptor, IFN activates IFNR receptor [69, 73-77]. 

These different receptors activate separate pathways and therefore have different downstream 

targets. Through TLR4, LPS regulates NF-kB, AP-1, IRF-3 and IRF-5 which in turn affect HIF-1, 

TNF, iNOS, IL-1, IL-12 and IL-6 [22, 78-80]. In contrast, IFN affects the JAK1/2, STAT1/2 pathways 

[22, 78-80]. These genes influence downstream iNOS, IL-12 and MHC II [22, 78-80].  Interestingly, 

the results of the present study show that in BMDM, UBM-ECM and SIS-ECM downregulate 

STAT1/2, IRF3/5 and iNOS. In addition, SIS-ECM facilitated downregulation of TNF-. These 

results show the ability of ECM degradation products to regulate the activation mechanism of 

macrophages. The ability of ECM to activate macrophages is well established and not surprising; 

however the molecular composition of ECM is complex and the specific component(s) 

responsible for this effect are only partially understood. MBV, a bioactive component within the 

ECM only recently described, dramatically affect macrophage activation. We postulate that MBV 

may have a key role in the ECM-mediated effects upon macrophage activation. Furthermore, the 

differences between UBM-ECM and SIS-ECM may be due to different signature of cryptic 

peptides, matrix-bound vesicles (MBV) miRNA cargo or other components within the ECM[81]. 

However, when macrophages are first activated with a pro-inflammatory stimulus, both SIS-ECM 

and UBM-ECM down-regulate markers associated with a classic inflammatory response including 

iNOS, STAT1, STAT2, and KLF6 which is consistent with observed in vivo events. Both MSIS-ECM and 

MUBM-ECM augment nitric oxide production after IFNy+LPS stimulus in vitro, but the MUBM-ECM 

phenotype is associated with an increased phagocytic capability compared to the MSIS-ECM 



phenotype. The present work shows that the “MECM” phenotype differs depending upon the ECM 

source tissue and is perhaps more accurately defined as “M’source-tissue’-ECM”, for example “MSIS-ECM” 

or “MUBM-ECM”.  

4.3 The effect of ECM upon naive macrophages vs. MIFNγ+LPS  

Following injury, ECM scaffolds are applied to a soft tissue site following injury. The macrophages 

that interact with the ECM scaffold are likely in an activated state rather than a resting state. In 

an attempt to mimic this scenario, the present study evaluated the phenotypic response of both 

resting macrophages and IFNγ+LPS activated macrophages. There were clear differences 

between the response of “resting” macrophages and “pre-activated” macrophages to ECM 

degradation products. As previously mentioned, the MSIS-ECM and the MUBM-ECM phenotypes are 

distinct from each other when naive macrophages are exposed to degradation products of ECM. 

However, MIFNy+LPS activated macrophages respond similarly to both ECM sources with a down-

regulation of inflammatory markers. The results of the present study show that the activation 

state of macrophages can influence the phenotypic response to subsequent stimuli. These 

findings are consistent with those of in vivo studies that show ECM bioscaffolds promote an anti-

inflammatory macrophage phenotype with associated constructive and functional outcomes 

when utilized in response to injury or disease [8, 82]. The MIFNy+LPS may better represent a 

physiologic macrophage’s state in response to injury, when investigating the in vitro response to 

a given stimulus.  

5. Conclusions 



The present study provides a comprehensive analysis of the macrophage phenotype 

associated with exposure to ECM scaffolds derived from the small intestine and urinary bladder. 

The results of the study demonstrate that the phenotype associated with both SIS-ECM and UBM-

ECM is distinct from the canonical MIFNy+LPS and MIL-4 phenotypes.  Of note, there were also 

differences observed between SIS-ECM and UBM-ECM, suggesting that the microenvironment of 

the source tissue from which the ECM bioscaffold is produced also plays a significant role in 

determining patterns of macrophage activation.  Lastly, it is noted that there are challenges and 

risks associated with making definitive conclusions about macrophage mediated events when 

results are based upon a particular macrophage population or a limited subset of macrophage 

markers.  A greater understanding of the effect of macrophage phenotype upon the tissue 

remodeling process associated with ECM scaffolds will enhance both the design and associated 

production methods of such scaffolds materials, and would logically improve the clinical 

outcomes associated with their use. 

Figures 



 

Figure 1. Gene expression of previously described “M1-like” and “M2-like” surface markers, 

cytokines, transcription factors and metabolic markers. (A) BMDM (left hand panel) and (B) THP-

1 (right hand panel) were treated with, UBM-ECM, SIS-ECM, IFN+LPS and IL-4 for 24 hours. 

Additionally, macrophages were pre-treated with IFN+LPS for 6 hours followed by 24 hours of 
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UBM or SIS treatment (n = 3). Samples were normalized to media treatment.  Gene expression 

was evaluated using qPCR data and is demonstrated in a heatmap form. Fold changes are 

presented using a color gradient bar. Principal component analysis (PCA) of delta Ct values scaled 

to unit variance. Biplot showing corrected principal component score values t(corr)[x] and 

loadings p(corr)[x] combined into one plot, where x is the component number. Genes that appear 

closer to the sample contributed to the distinction of that sample. The commonly cited genes 

associated with IFNγ+LPS and IL-4 activation that were chosen for further protein analyses for 

THP1 (C) and BMDM (D) derived macrophages and are highlighted. 
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Figure 2. ECM degradation products promote an immunomodulatory, “M2-like” phenotype. (A) 

Human monocytes from the THP1 cell-line were cultured in media supplemented with PMA to 

derive macrophages. Macrophages were treated with 20 ng/ml IFNγ and 100 ng/ml LPS to derive 

“M1-like” macrophages, 20 ng/ml IL-4 to derive “M2-like” macrophages, 200 ug/ml SIS-ECM 

degradation products, or 200 g/ml pepsin control buffer. Additionally, “M1-like” 

macrophages were exposed to either 200 g/ml UBM-ECM, or 200 g/ml SIS-ECM degradation 

products to simulate the physiologic scenario of an injury treated with an ECM scaffold. 

Macrophages were fixed and immunolabeled for the pan-macrophage marker (CD11b), and 

strong indicators of the M1-like (TNF and iNOS) and M2-like (CD206 and TGM2) phenotype. 

ECM treated cells show increased expression of TGM2 and CD206, markers associated with the 

IL-4-pushed phenotype. (B) Immunolabeling results were further evaluated using western-blot 

analysis of the TNF, iNOS, CD206, and TGM2 markers (bottom Panel). (C) Bone marrow was 

isolated from C57bl/6 mice and cultured in media supplemented with macrophage-colony-

stimulating-factor (MCSF) to derive macrophages. “M1-like” macrophages, “M2-like” 

macrophages, and ECM-activated macrophages were derived as described above. 

Additionally, “M1-like” macrophages were exposed to UBM-ECM or SIS-ECM degradation 

products as before.  Macrophages were fixed and immunolabeled for the pan-macrophage 

marker (F4/80), and strong indicators of the M1-like (TNF and iNOS) and M2-like (Fizz and 

Arginase) phenotype. ECM treated cells show increased expression of Fizz and Arginase, 

associated with the IL-4-pushed phenotype, as well as TNF, associated with the IFNγ/LPS-

pushed phenotype, suggesting that the ECM treated cells adopt a unique phenotype. (D). 



Immunolabeling results were further evaluated using western-blot analysis of the STAT1, 

Arginase, Fizz, iNOS, and TNF markers (bottom Panel). Scale bar is equal to 200 m.  

  



 

Figure 3. Functional Assessement of ECM-Treated Macrophages. Phagocytosis activity in BMDM 

(A) and ThP1macrophages (B) was assessed using incubation with Vybrant FITC-labeled E. coli 

particles then M.F.I. analysis. Nitric oxide production from BMDM (C) and THP1 macrophages (D) 

was assessed using the Greiss reagent system on macrophage supernatants following treatment. 
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