344 research outputs found

    Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements

    Full text link
    Manifestations of P-,T-odd weak interaction between nucleons in nucleus are considered. Renormalization of this interaction due to residual strong interaction is studied. Mean squared matrix elements of P-,T-odd weak interaction between compound states are calculated. Correlators between P-,T-odd and P-odd, T-even weak interaction matrix elements between compound states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure

    Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approach

    Get PDF
    Alzheimer’s disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Westerncountries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by usingautomatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selectedis based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work isfeature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. Thefeature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speechthat are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful whentraining data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters inthe feature vector in order to enhance the performance of the original system while controlling the computational cost.© 2014 Elsevier Ltd. All rights reserved

    Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): Study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III)

    Get PDF
    Background: Perinatal asphyxia and resulting hypoxic-ischemic encephalopathy is a major cause of death and long-term disability in term born neonates. Up to 20,000 infants each year are affected by HIE in Europe and even more in regions with lower level of perinatal care. The only established therapy to improve outcome in these infants is therapeutic hypothermia. Allopurinol is a xanthine oxidase inhibitor that reduces the production of oxygen radicals as superoxide, which contributes to secondary energy failure and apoptosis in neurons and glial cells after reperfusion of hypoxic brain tissue and may further improve outcome if administered in addition to therapeutic hypothermia. Methods: This study on the effects of ALlopurinol in addition to hypothermia treatment for hypoxic-ischemic Brain Injury on Neurocognitive Outcome (ALBINO), is a European double-blinded randomized placebo-controlled parallel group multicenter trial (Phase III) to evaluate the effect of postnatal allopurinol administered in addition to standard of care (including therapeutic hypothermia if indicated) on the incidence of death and severe neurodevelopmental impairment at 24 months of age in newborns with perinatal hypoxic-ischemic insult and signs of potentially evolving encephalopathy. Allopurinol or placebo will be given in addition to therapeutic hypothermia (where indicated) to infants with a gestational age 65 36 weeks and a birth weight 65 2500 g, with severe perinatal asphyxia and potentially evolving encephalopathy. The primary endpoint of this study will be death or severe neurodevelopmental impairment versus survival without severe neurodevelopmental impairment at the age of two years. Effects on brain injury by magnetic resonance imaging and cerebral ultrasound, electric brain activity, concentrations of peroxidation products and S100B, will also be studied along with effects on heart function and pharmacokinetics of allopurinol after iv-infusion. Discussion: This trial will provide data to assess the efficacy and safety of early postnatal allopurinol in term infants with evolving hypoxic-ischemic encephalopathy. If proven efficacious and safe, allopurinol could become part of a neuroprotective pharmacological treatment strategy in addition to therapeutic hypothermia in children with perinatal asphyxia. Trial registration: NCT03162653, www.ClinicalTrials.gov, May 22, 2017

    Parental origin of sequence variants associated with complex diseases

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldEffects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.info:eu-repo/grantAgreement/EC/FP7/21807

    Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity

    Get PDF
    Background: The actin-interacting protein WD repeat–containing protein 1 (WDR1) promotes cofilin-dependent actin filament turnover. Biallelic WDR1 mutations have been identified recently in an immunodeficiency/autoinflammatory syndrome with aberrant morphology and function of myeloid cells. Objective: Given the pleiotropic expression of WDR1, here we investigated to what extent it might control the lymphoid arm of the immune system in human subjects. Methods: Histologic and detailed immunologic analyses were performed to elucidate the role of WDR1 in the development and function of B and T lymphocytes. Results: Here we identified novel homozygous and compound heterozygous WDR1 missense mutations in 6 patients belonging to 3 kindreds who presented with respiratory tract infections, skin ulceration, and stomatitis. In addition to defective adhesion and motility of neutrophils and monocytes, WDR1 deficiency was associated with aberrant T-cell activation and B-cell development. T lymphocytes appeared to develop normally in the patients, except for the follicular helper T-cell subset. However, peripheral T cells from the patients accumulated atypical actin structures at the immunologic synapse and displayed reduced calcium flux and mildly impaired proliferation on T-cell receptor stimulation. WDR1 deficiency was associated with even more severe abnormalities of the B-cell compartment, including peripheral B-cell lymphopenia, paucity of B-cell progenitors in the bone marrow, lack of switched memory B cells, reduced clonal diversity, abnormal B-cell spreading, and increased apoptosis on B-cell receptor/Toll-like receptor stimulation. Conclusion: Our study identifies a novel role for WDR1 in adaptive immunity, highlighting WDR1 as a central regulator of actin turnover during formation of the B-cell and T-cell immunologic synapses

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
    • 

    corecore