196 research outputs found
Crystallization of classical multi-component plasmas
We develop a method for calculating the equilibrium properties of the
liquid-solid phase transition in a classical, ideal, multi-component plasma.
Our method is a semi-analytic calculation that relies on extending the accurate
fitting formulae available for the one-, two-, and three-component plasmas to
the case of a plasma with an arbitrary number of components. We compare our
results to those of Horowitz, Berry, & Brown (Phys. Rev. E, 75, 066101, 2007),
who use a molecular dynamics simulation to study the chemical properties of a
17-species mixture relevant to the ocean-crust boundary of an accreting neutron
star, at the point where half the mixture has solidified. Given the same
initial composition as Horowitz et al., we are able to reproduce to good
accuracy both the liquid and solid compositions at the half-freezing point; we
find abundances for most species within 10% of the simulation values. Our
method allows the phase diagram of complex mixtures to be explored more
thoroughly than possible with numerical simulations. We briefly discuss the
implications for the nature of the liquid-solid boundary in accreting neutron
stars.Comment: 14 pages, 5 figures, submitted to Phys. Rev.
The Physics of Crystallization from Globular Cluster White Dwarf Stars in NGC 6397
We explore the physics of crystallization in the deep interiors of white
dwarf stars using the color-magnitude diagram and luminosity function
constructed from proper motion cleaned Hubble Space Telescope photometry of the
globular cluster NGC 6397. We demonstrate that the data are consistent with the
theory of crystallization of the ions in the interior of white dwarf stars and
provide the first empirical evidence that the phase transition is first order:
latent heat is released in the process of crystallization as predicted by van
Horn (1968). We outline how this data can be used to observationally constrain
the value of Gamma = E_{Coulomb}/E_{thermal} near the onset of crystallization,
the central carbon/oxygen abundance, and the importance of phase separation.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical
Journal Letter
Phenotypic plasticity as a clue for the invasion success of the submerged aquatic plant Elodea nuttallii
Two closely related alien submerged aquatic plants were introduced into Europe. The
new invader (Elodea nuttallii) gradually displaced E. canadensis even at sites where the
latter was well established. The aim of the study was to evaluate the combined effects
of environmental factors on several phenotypic characteristics of the two Elodea species, and to relate these phenotypic characteristics to the invasion success of E. nuttallii
over E. canadensis. In a factorial design, Elodea plants were grown in aquaria containing five different nitrogen concentrations and incubated at five different light intensities. We used six functional traits (apical shoot RGR), total shoot RGR, relative elongation, root length, lateral
spread, branching degree) to measure the environmental response of the species. We
calculated plasticity indices to express the phenotypic differences between species. Light and nitrogen jointly triggered the development of phenotypic characteristics that
make E. nuttallii a more successful invader in eutrophic waters than E. canadensis. The
stronger invader showed a wider range of phenotypic plasticity. The apical elongation
was the main difference between the two species, with E. nuttallii being more than two
times longer than E. canadensis. E. canadensis formed dense side shoots even under
high shade and low nitrogen levels, whereas E. nuttallii required higher light and
nitrogen levels. We found that under more eutrophic conditions, E. nuttallii reach the water surface
sooner than E. canadensis and through intensive branching outcompetes all other
plants including E. canadensis. Our findings support the theory that more successful
invaders have wider phenotypic plasticit
New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution
Cool white dwarfs are reliable and independent stellar chronometers. The most
common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling
ages of very cool white dwarfs sensitively depend on the adopted phase diagram
of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen
mixtures appropriate for white dwarf interiors has been recently obtained using
direct molecular dynamics simulations. In this paper, we explore the
consequences of this phase diagram in the evolution of cool white dwarfs. To do
this we employ a detailed stellar evolutionary code and accurate initial white
dwarf configurations, derived from the full evolution of progenitor stars. We
use two different phase diagrams, that of Horowitz et al. (2010), which
presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993),
which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun
white dwarf models during the crystallization phase, and we found that the
energy released by carbon-oxygen phase separation is smaller when the new phase
diagram of Horowitz et al. (2010) is used. This translates into time delays
that are on average a factor about 2 smaller than those obtained when the phase
diagram of Segretain & Chabrier (1993) is employed. Our results have important
implications for white dwarf cosmochronology, because the cooling ages of very
old white dwarfs are different for the two phase diagrams. This may have a
noticeable impact on the age determinations of very old globular clusters, for
which the white dwarf color-magnitude diagram provides an independent way of
estimating their age.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
Evolutionary calculations of phase separation in crystallizing white dwarf stars
We present an exploration of the significance of Carbon/Oxygen phase
separation in white dwarf stars in the context of self-consistent evolutionary
calculations. Because phase separation can potentially increase the calculated
ages of the oldest white dwarfs, it can affect the age of the Galactic disk as
derived from the downturn in the white dwarf luminosity function. We find that
the largest possible increase in ages due to phase separation is 1.5 Gyr, with
a most likely value of approximately 0.6 Gyr, depending on the parameters of
our white dwarf models.
The most important factors influencing the size of this delay are the total
stellar mass, the initial composition profile, and the phase diagram assumed
for crystallization. We find a maximum age delay in models with masses of 0.6
solar masses, which is near the peak in the observed white dwarf mass
distribution. We find that varying the opacities (via the metallicity) has
little effect on the calculated age delays.
In the context of Galactic evolution, age estimates for the oldest Galactic
globular clusters range from 11.5 to 16 Gyr, and depend on a variety of
parameters. In addition, a 4 to 6 Gyr delay is expected between the formation
of the globular clusters and that of the Galactic thin disk, while the observed
white dwarf luminosity function gives an age estimate for the thin disk of 9.5
+/-1.0 Gyr, without including the effect of phase separation. Using the above
numbers, we see that phase separation could add between 0 to 3 Gyr to the white
dwarf ages and still be consistent with the overall picture of Galaxy
formation. Our calculated maximum value of 1.5 Gyr fits within these bounds, as
does our best guess value of 0.6 Gyr.Comment: 13 total pages, 8 figures, 3 tables, accepted for publication in the
Astrophysical Journal on May 25, 199
Plant dispersal by teal (Anas crecca) in the Camargue: duck guts are more important than their feet
12 pĂĄginas, 3 figuras, 4 tablas.1. Migratory waterbirds are major vectors for the dispersal of aquatic plants. However, quantitative field studies of the frequency of transport are scarce, and the relative importance of internal and external transport remains unclear.
2. We quantified and compared the rates of internal and external transport of aquatic plant propagules by teal (Anas crecca) in the Camargue (southern France), inspecting the lower gut contents of birds that had been shot (n = 366) and washing birds that had been live-trapped (n = 68) during the winters of 2006â2007 and 2007â2008.
3. Intact propagules (n = 902) of 21 plant taxa were recorded in the rectum of teal, of which 16 germinated or were shown to be viable. Intact propagules were recorded in the rectum of 20% of teal, with up to 171 propagules per individual bird. Chara oogonia were most abundant (60% of intact propagules), suggesting that small size favours internal transport. Eleocharis palustris, Juncus spp. and Potamogeton pusillus (17, 7 and 6% of intact propagules, respectively) were also very abundant.
4. Intact propagules (n = 12) of 10 plant taxa were found on the outside of live teal, and four of these taxa later germinated. Intact propagules were found on 18% of teal. No teal was found to carry more than one propagule externally. There was no difference in size between propagules transported internally and externally.
5. Teal are major dispersers of plants within the Camargue, despite being highly granivorous. Contrary to widespread assumptions in the literature, endozoochory by ducks appears to be a much more important mode of dispersal for aquatic plants than exozoochory. We found no evidence of changes in the probability of plant propagule dispersal at a landscape scale over the course of the winter, so propagule production and zoochory appear to be decoupled over time in aquatic systems.A.-L. Brochet is funded by a Doctoral grant
from Office National de la Chasse et de la Faune
Sauvage, with additional funding from a research
agreement between ONCFS, the Tour du Valat,
Laboratoire de Biométrie et de Biologie Evolutive
(UMR 5558 CNRS Université Lyon 1) and the Doñana
Biological Station (CSIC). This work also received
funding from the Agence Nationale de la Recherche
through the SantĂ© Environnement â SantĂ© Travail
scheme (contract number 2006-SEST-22).Peer reviewe
Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability
Effective monitoring, prevention and impact mitigation of nonindigenous aquatic species relies upon the ability to predict dispersal pathways and receiving habitats with the greatest risk of establishment. To examine mechanisms affecting species establishment within a large lake, we combined observations of recreational boater movements with empirical measurements of habitat suitability represented by nearshore wave energy to assess the relative risk of Eurasian watermilfoil (Myriophyllum spicatum) establishment. The model was evaluated using information from a 17 year (1995â2012) sequence of M. spicatum presence and absence monitoring. M. spicatum presence was not specifically correlated with recreational boater movements; however its establishment appears to be limited by wave action in Lake Tahoe. Of the sites in the âHighâ establishment risk category (n = 37), 54% had current or historical infestations, which included 8 of the 10 sites with the highest relative risk. Of the 11 sites in the âMediumâ establishment risk category, 5 had current or historical M. spicatum populations. Most (76%) of the sites in the âLowâ establishment risk category were observed in locations with higher wave action. Four sites that received zero boater visits from infested locations were occupied by M. spicatum. This suggests that the boater survey either represents incomplete coverage of boater movement, or other processes, such as the movement of propagules by surface currents or introductions from external sources are important to the establishment of this species. This study showed the combination of habitat specific and dispersal data in a relative risk framework can potentially reduce uncertainty in estimates of invasion risk
- âŠ