We explore the physics of crystallization in the deep interiors of white
dwarf stars using the color-magnitude diagram and luminosity function
constructed from proper motion cleaned Hubble Space Telescope photometry of the
globular cluster NGC 6397. We demonstrate that the data are consistent with the
theory of crystallization of the ions in the interior of white dwarf stars and
provide the first empirical evidence that the phase transition is first order:
latent heat is released in the process of crystallization as predicted by van
Horn (1968). We outline how this data can be used to observationally constrain
the value of Gamma = E_{Coulomb}/E_{thermal} near the onset of crystallization,
the central carbon/oxygen abundance, and the importance of phase separation.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical
Journal Letter