14 research outputs found

    Coverage, determinants of use and repurposing of long‑lasting insecticidal nets two years after a mass distribution in Lihir Islands, Papua New Guinea: a cross‑sectional study

    Get PDF
    Background: Universal coverage with long-lasting insecticidal nets (LLINs) is an essential component of malaria control programmes. Three-yearly mass distribution of LLINs in Papua New Guinea (PNG) has been successful in reducing infection transmission since 2009, but malaria prevalence ramped up from 2015 onwards. Although LLIN universal coverage is mostly achieved during these campaigns, it may not be related with net use over time. Uses given to LLINs and non-compliance of this strategy were evaluated. Methods: A knowledge, attitude and practice (KAP) cross-sectional study was conducted in Lihir Islands, PNG, 2–2.5 years after the last LLIN mass distribution campaign. Data on bed net ownership, use and maintenance behaviour was collected using a household questionnaire administered by trained community volunteers. Logistic regression models were used to identify factors associated with owning at least one LLIN and sleeping under a LLIN the previous night. Results: Among 2694 households surveyed, 27.4 % (95 % CI: 25.8–29.2) owned at least one LLIN and 8.7 % (95 % CI: 7.6–9.8) had an adequate LLIN coverage (at least one LLIN for every two people). Out of 13,595 individuals in the surveyed households, 13.6 % (95 % CI: 13.0-–4.2) reported having slept under a LLIN the preceding night. Determinants for sleeping under LLIN included living in a household with adequate LLIN coverage [adjusted OR (aOR) = 5.82 (95 % CI: 3.23–10.49)], household heads knowledge about LLINs [aOR = 16.44 (95 % CI: 8.29–32.58)], and female gender [aOR = 1.92 (95 % CI: 1.53–2.40)] (all p-values < 0.001). LLIN use decreased with older age [aOR = 0.29 (95 % CI: 0.21–0.40) for ≥ 15 year-olds, aOR = 0.38 (95 % CI: 0.27–0.55) for 5–14 year-olds] compared to < 5 year-olds (p-value < 0.001). Knowledge on the use of LLIN was good in 37.0 % of the household heads. Repurposed nets were reported serving as fishing nets (30.4 %), fruits and seedlings protection (26.6 %), covering up food (19.0 %) and bed linen (11.5 %). Conclusions: Two years after mass distribution, LLIN coverage and use in Lihir Islands is extremely low. Three yearly distribution campaigns may not suffice to maintain an acceptable LLIN coverage unless knowledge on maintenance and use is promoted trough educational campaigns

    Trace Metal Chemistry in the Water Column of the Angola Basin - A Contribution to the International GEOTRACES Program - Cruise No. M121, November 22, – December 27, 2015, Walvis Bay (Namibia) – Walvis Bay (Namibia)

    Get PDF
    Meteor Cruise M121 was dedicated to the investigation of the distribution of dissolved and particulate trace metals and their isotopic compositions (TEIs) in the full water column of the Angola Basin and the northernmost Cape Basin. A key aim was to determine the driving factors for the observed distributions, which includes the main external inputs, as well as internal cycling and ocean circulation. The research program of the cruise is official part of the international GEOTRACES program (www.geotraces.org) and cruise M121 corresponds to GEOTRACES cruise GA11. Subject of the cruise was the trace metal clean and contamination-free sampling of waters and particulates for subsequent analyses of the TEIs in the home laboratories of the national and international participants. Besides a standard rosette for the less contaminant prone metals, trace metal clean sampling was realized by using for the first time a new dedicated, coated trace metal clean rosette equipped with Teflon-coated GO-FLO bottles operated via a plastic coated cable from a mobile winch of GEOMAR Kiel. The particulate samples were collected under trace metal clean conditions using established in-situ pump systems operated from Meteor’s Aramid line. The cruise track led from Walvis Bay northwards along the West African margin until 3°S, then turned west until the Zero Meridian, which was followed southwards until 30°S. Then the cruise track turned east again until the Namibian margin was reached and then completed the near shore track northwards until Walvis Bay. The track crossed areas of major external inputs including dust from the Namib Desert and exchange with the west African continental margin and with the oxygen depleted shelf sediments of the Benguela upwelling, as well as with the plume of the Congo outflow, that was followed from its mouth northwards. Our investigations of internal cycling included the extremely high productivity associated with the Benguela Upwelling and the elevated productivity of the Congo plume contrasting with the extremely oligotrophic waters of the southeastern Atlantic Gyre. The links between TEI biogeochemistry and the nitrogen cycle forms an important aspect of our study. The major water masses contributing the Atlantic Meridional Overturning Circulation were sampled in order to investigate if particular TEI signatures are suitable as water mass tracers, in particular near the ocean margin and in the restricted deep Angola Basin. A total of 51 full water column stations were sampled for the different dissolved TEIs, which were in most cases accompanied by sampling for particulates and radium isotopes using the in-situ pumps. In addition, surface waters were continuously sampled under trace metal clean conditions using a towed fish and aerosol and rain samples were continuously collected

    Triphenylene Silanes for Direct Surface Anchoring in Binary Mixed Self-Assembled Monolayers

    No full text
    New triphenylene-based silanes 2-(ω-(chlorodimethylsilyl)-<i>n</i>-alkyl)-3,6,7,10,11-penta-<i>m</i>-alkoxytriphenylene <b>4 (T<i>m</i>-C<i>n</i>)</b> with <i>n</i> = 8 or 9 and <i>m</i> = 7, 8, 9, 10, or 11 were synthesized, and their self-assembly behavior in the liquid state and at glass and silicon oxide surfaces was investigated. The mesomorphic properties of triphenylene silanes <b>4 (T<i>m</i>-C<i>n</i>)</b> and their precursors <b>3 (T<i>m</i>-C<i>n</i>)</b> were determined by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction. From the small-angle X-ray scattering (SAXS) regime, a preferential discotic lamellar mesophase can be deduced, and wide-angle X-ray scattering (WAXS) highlights the liquid-like characteristics of the alkyl side chains. To transfer these bulk structural properties to thin films, self-assembled monolayers (SAMs) were obtained by adsorption from solution and characterized by water contact angle measurements, null ellipsometry, and atomic force microscopy (AFM). Employing the concentration as an additional degree of freedom, binary SAMs of 2-(ω-(chlorodimethylsilyl)-undecyl)-3,6,7,10,11-penta-decyloxytriphenylene <b>4 (T10-C11)</b> were coassembled with chlorodecyldimethylsilane or chlorodimethyloctadecylsilane, and their capability as model systems for organic templating was evaluated. The structure of the resulting binary mixed SAMs was analyzed by water contact angle measurements, null ellipsometry, and X-ray reflectivity (XRR) in combination with theoretical modeling by a multidimensional Parratt algorithm and AFM. The composition dependence of film thickness and roughness can be explained by a microscopic model including the steric hindrance of the respective molecular constituents

    Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3

    No full text
    In the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), and as contribution to the second phase of the Hemispheric Transport of Air Pollution (HTAP2) activities for Europe and North America, the impacts of a 20% decrease of global and regional anthropogenic emissions on surface air pollutant levels in 2010 are simulated by an international community of regional-scale air quality modeling groups, using different state-of-the-art chemistry and transport models (CTMs). The emission perturbations at the global level, as well as over the HTAP2-defined regions of Europe, North America and East Asia, are first simulated by the global Composition Integrated Forecasting System (C-IFS) model from European Centre for Medium-Range Weather Forecasts (ECMWF), which provides boundary conditions to the various regional CTMs participating in AQMEII3. On top of the perturbed boundary conditions, the regional CTMs used the same set of perturbed emissions within the regional domain for the different perturbation scenarios that introduce a 20% reduction of anthropogenic emissions globally as well as over the HTAP2-defined regions of Europe, North America and East Asia. Results show that the largest impacts over both domains are simulated in response to the global emission perturbation, mainly due to the impact of domestic emission reductions. The responses of NO2, SO2 and PM concentrations to a 20% anthropogenic emission reduction are almost linear (∼20% decrease) within the global perturbation scenario with, however, large differences in the geographical distribution of the effect. NO2, CO and SO2 levels are strongly affected over the emission hot spots. O3 levels generally decrease in all scenarios by up to ∼1% over Europe, with increases over the hot spot regions, in particular in the Benelux region, by an increase up to ∼6% due to the reduced effect of NOx titration. O3 daily maximum of 8h running average decreases in all scenarios over Europe, by up to ∼1%. Over the North American domain, the central-to-eastern part and the western coast of the US experience the largest response to emission perturbations. Similar but slightly smaller responses are found when domestic emissions are reduced. The impact of intercontinental transport is relatively small over both domains, however, still noticeable particularly close to the boundaries. The impact is noticeable up to a few percent, for the western parts of the North American domain in response to the emission reductions over East Asia. O3 daily maximum of 8h running average decreases in all scenarios over north Europe by up to ∼5%. Much larger reductions are calculated over North America compared to Europe. In addition, values of the Response to Extra-Regional Emission Reductions (RERER) metric have been calculated in order to quantify the differences in the strengths of non-local source contributions to different species among the different models. We found large RERER values for O3 (∼0.8) over both Europe and North America, indicating a large contribution from non-local sources, while for other pollutants including particles, low RERER values reflect a predominant control by local sources. A distinct seasonal variation in the local vs. non-local contributions has been found for both O3 and PM2.5, particularly reflecting the springtime long-range transport to both continents.JRC.C.5-Air and Climat

    Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3

    No full text
    The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20% anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414000, while in the US, it is estimated to be 160000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30% in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by 11%. A total of 54000 and 27500 premature deaths can be avoided by a 20% reduction of global anthropogenic emissions in Europe and the US, respectively. A 20% reduction of North American anthropogenic emissions avoids a total of 1000 premature deaths in Europe and 25000 total premature deaths in the US. A 20% decrease of anthropogenic emissions within the European source region avoids a total of 47000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20% avoids 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution

    Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3

    No full text
    The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by  ∼  11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of  ∼  1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids  ∼  2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.JRC.C.5-Air and Climat

    Epistemological journeys in participatory action research: alliances between community psychology and disability studies

    No full text
    This paper seeks to explore emancipatory disability research possibilities through the use of participatory action research and the cross-fertilisation of ideas between British disability studies (DS) and community psychology (CP). First, we consider the psychology in CP and suggest that it is far removed from mainstream psychology's pathological vision of disabled people. Second, we draw on Burrell and Morgan's (1979) model of paradigms to interrogate research practice in DS and CP. Third, we compare and contrast research narratives from DS and CP through reference to some examples of our own research. We argue that CP pays particular attention to the development of community selves and cultural identities within the participatory action research process: which we feel to be a key concern for the development of an emancipatory DS. We conclude that recognising the radical humanist element of participatory action research (PAR) permits us to navigate an enabling journey for disability research

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    International audienceBackground: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/ hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH 2 O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH 2 O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH 2 O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury
    corecore