98 research outputs found
Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study
How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe[superscript II] as a Lewis acid under normal growth conditions but which switch to Mn[superscript II] under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe[superscript II] and Mn[superscript II], the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, “discrimination” between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.National Institutes of Health (U.S.) (Grant GM81393
Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa
Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential ecological impacts, specifically in terms of its dietary overlap with native gastropods.A stable isotope mixing model was used together with gut content analysis to estimate the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary organic matter. IDO was significant (>60%) between T. granifera and each of the following gastropods: Haminoea natalensis (Krauss, 1848), Bulinus natalensis (Küster, 1841) and Melanoides tuberculata (Müller, 1774). However, food did not appear to be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.The generalist diet of T. granifera may certainly contribute to its successful establishment. However, although competition for resources may take place under certain salinity conditions and if food is limiting, there appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding further invasive species research
Aware Woman, In-Touch Body: Female Sexual Embodiment in the Patriarchy
From a feminist perspective, women in the patriarchy experience various forms of sexual oppression, existing in female gender socialization, women's sexual roles, and cultural conditioning that de-emphasizes the importance of the clitoris and women's sexual desire. This thesis uses hermeneutic methodology to examine the impacts of oppression on the sexual experience of women and explored the practices of mindfulness and masturbation as ways women can move beyond social conditioning and toward the embodiment of their sexual arousal, pleasure, and satisfaction as it is authentically experienced within them. This thesis supported a somatic approach in psychotherapy when working with women's sexual disembodiment and emphasized the importance of awareness, embodiment, sexual self-exploration, and information sharing as mediators of the effects of women's oppressive social conditioning
Diatom colonization on artificial substrates in the Maple River system.
http://deepblue.lib.umich.edu/bitstream/2027.42/53713/1/2148.pdfDescription of 2148.pdf : Access restricted to on-site users at the U-M Biological Station
A checklist of phytoplankton (exclusive of diatoms) in Kentucky Reservoir
Volume: 46Start Page: 46End Page: 5
Effects of nitrogen, phosphorus and carbon enrichment on planktonic and periphytic algae in a softwater, oligotrophic lake in Florida, USA
DNA-induced synthesis of biomimetic enzyme for sensitive detection of superoxide anions released from live cell
Manganous Phosphate Acts as a Superoxide Dismutase
A substantial body of evidence indicates that high intracellular concentrations of inorganic manganous ions render some cells resistant to ionizing radiation and provide substantial antioxidant protection to aerobic cells lacking superoxide dismutase (SOD) enzymes. We found that manganous phosphate is unique among those manganous salts studied in its ability to remove superoxide rapidly and catalytically from aqueous solution via a disproportionation mechanism that is entirely different from those of the SOD enzymes
- …
