1,683 research outputs found

    An Examination of Student and Faculty Perceptions Regarding Music Education Transfer Student Preparedness and Experiences

    Get PDF
    Transfer students account for growing numbers in four-year music education programs. To better understand this increasing population of students, researchers employed parallel method design. One strand investigated music education faculty members’ (n = 83) perceptions of transfer student preparedness, procedures, and expectations to understand admissions processes (e.g., curricula, assessments) employed to evaluate incoming transfer students. The other strand examined music education transfer students’ (n = 12) academic, social, and personal preparedness to study music education in a comprehensive four-year music education program. The following research questions served as a guide for data collection and analysis: (a) What themes emerged for students throughout the investigation of the transfer process? (b) What are transfer students’ perceptions of academic and musical preparedness once making the transition to four-year institutions? and (c) What are college professors’ perceptions of transfer students’ academic and musical preparedness upon arrival at four-year institutions? Findings from both student and faculty perspectives suggest that transfer students exhibit three common concerns throughout the transfer process. These concerns were academic, social, and personal. Further, transfer students’ preparedness also emerged as a theme mentioned by music faculty as an obstacle for incoming students. Themes also included performance on departmental diagnostic assessments, various modes of communication among music faculty (i.e., applied, classroom), students, and university/college administrative personnel. Researchers provide an analysis and suggestions for addressing these concerns from multiple perspectives as well as suggestions for future research

    The elevated Curie temperature and half-metallicity in the ferromagnetic semiconductor Lax_{x}Eu1x_{1-x}O

    Get PDF
    Here we study the effect of La doping in EuO thin films using SQUID magnetometry, muon spin rotation (μ\muSR), polarized neutron reflectivity (PNR), and density functional theory (DFT). The μ\muSR data shows that the La0.15_{0.15}Eu0.85_{0.85}O is homogeneously magnetically ordered up to its elevated TCT_{\rm C}. It is concluded that bound magnetic polaron behavior does not explain the increase in TCT_{\rm C} and an RKKY-like interaction is consistent with the μ\muSR data. The estimation of the magnetic moment by DFT simulations concurs with the results obtained by PNR, showing a reduction of the magnetic moment per Lax_{x}Eu1x_{1-x}O for increasing lanthanum doping. This reduction of the magnetic moment is explained by the reduction of the number of Eu-4ff electrons present in all the magnetic interactions in EuO films. Finally, we show that an upwards shift of the Fermi energy with La or Gd doping gives rise to half-metallicity for doping levels as high as 3.2 %.Comment: 7 pages, 11 figure

    Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae)

    Get PDF
    The understanding of Earth’s biodiversity depends critically on the accurate identification and nomenclature of species. Many species were described centuries ago, and in a surprising number of cases their nomenclature or type material remain unclear or inconsistent. A prime example is provided by Elephas maximus, one of the most iconic and well-known mammalian species, described and named by Linnaeus (1758) and today designating the Asian elephant. We used morphological, ancient DNA (aDNA), and high-throughput ancient proteomic analyses to demonstrate that a widely discussed syntype specimen of E. maximus, a complete foetus preserved in ethanol, is actually an African elephant, genus Loxodonta. We further discovered that an additional E. maximus syntype, mentioned in a description by John Ray (1693) cited by Linnaeus, has been preserved as an almost complete skeleton at the Natural History Museum of the University of Florence. Having confirmed its identity as an Asian elephant through both morphological and ancient DNA analyses, we designate this specimen as the lectotype of E. maximus

    Closing the compliance gap in marine protected areas with human behavioural sciences

    Get PDF
    Advocates, practitioners and policy-makers continue to use and advocate for marine protected areas (MPAs) to meet global ocean protection targets. Yet many of the worlds MPAs, and especially no-take MPAs, are plagued by poaching and ineffective governance. Using a global dataset on coral reefs as an example, we quantify the potential ecological gains of governing MPAs to increase compliance, which we call the ‘compliance gap’. Using ecological simulations based on model posteriors of joint Bayesian hierarchical models, we demonstrate how increased compliance in no-take MPAs could nearly double target fish biomass (91% increases in median fish biomass), and result in a 292% higher likelihood of encountering top predators. Achieving these gains and closing the compliance gap necessitates a substantial shift in approach and practice to go beyond optimizing enforcement, and towards governing for compliance. This will require engaging and integrating a broad suite of actors, principles, and practices across three key domains: (i)) harnessing social influence, (ii) integrating equity principles, and (iii) aligning incentives through market-based instruments. Empowering and shaping communication between actor groups (e.g., between fishers, practitioners, and policy-makers) using theoretically underpinned approaches from the behavioural sciences is one of the most essential, but often underserved aspects of governing MPAs. We therefore close by highlighting how this cross-cutting tool could be further integrated in governance to bolster high levels of compliance in MPAs

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    The next generation fungal diversity researcher

    Get PDF
    Fungi are more important to our lives than is assumed by the general public. They can comprise both devastating pathogens and plant-associated mutualists in nature, and several species have also become important workhorses of biotechnology. Fungal diversity research has in a short time transcended from a low-tech research area to a method-intensive high-tech discipline. With the advent of the new genomic and post-genomic methodologies, large quantities of new fungal data are currently becoming available each year. Whilst these new data and methodologies may help modern fungal diversity researchers to explore and discover the yet hidden diversity within a context of biological processes and organismal diversity, they need to be reconciled with the traditional approaches. Such a synthesis is actually difficult to accomplish given the current discouraging situation of fungal biology education, especially in the areas of biodiversity and taxonomic research. The number of fungal diversity researchers and taxonomists in academic institutions is decreasing, as are opportunities for mycological education in international curricula. How can we educate and stimulate students to pursue a career in fungal diversity research and taxonomy and avoid the situation whereby only those few institutions with strong financial support are able to conduct excellent research? Our short answer is that we need a combination of increased specialization and increased collaboration, i.e. that scientists with specialized expertise (e.g., in data generation, compilation, interpretation, and communication) consistently work together to generate and deliver new fungal knowledge in a more integrative manner – closing the gap between both traditional and modern approaches and academic and non-academic environments. Here we discuss how this perspective could be implemented in the training of the ‘next generation fungal diversity researcher’

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr
    corecore