432 research outputs found
The underlying physical meaning of the relation
Asteroseismology of stars that exhibit solar-like oscillations are enjoying a
growing interest with the wealth of observational results obtained with the
CoRoT and Kepler missions. In this framework, scaling laws between
asteroseismic quantities and stellar parameters are becoming essential tools to
study a rich variety of stars. However, the physical underlying mechanisms of
those scaling laws are still poorly known. Our objective is to provide a
theoretical basis for the scaling between the frequency of the maximum in the
power spectrum () of solar-like oscillations and the cut-off
frequency (). Using the SoHO GOLF observations together with
theoretical considerations, we first confirm that the maximum of the height in
oscillation power spectrum is determined by the so-called \emph{plateau} of the
damping rates. The physical origin of the plateau can be traced to the
destabilizing effect of the Lagrangian perturbation of entropy in the
upper-most layers which becomes important when the modal period and the local
thermal relaxation time-scale are comparable. Based on this analysis, we then
find a linear relation between and , with a
coefficient that depends on the ratio of the Mach number of the exciting
turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&
Gross solids from combined sewers in dry weather and storms, elucidating production, storage and social factors
Variation in rates of sanitary hygiene products, toilet tissue and faeces occurring in sewers are presented for dry and wet weather from three steep upstream urban catchments with different economic, age and ethnic profiles. Results show, for example, that total daily solids per capita from the low income and ageing populations are almost twice that from high income or ethnic populations. Relative differences are verified through independent questionnaires. The relationship between solids stored in sewers prior to storms, antecedent dry weather period and the proportion of roof to total catchment area is quantified. A full solids' flush occurs when storm flows exceed three times the peak dry weather flow. The data presented will assist urban drainage designers in managing pollution caused by the discharge of sewage solids
Stellar turbulence and mode physics
An overview of selected topical problems on modelling oscillation properties
in solar-like stars is presented. High-quality oscillation data from both
space-borne intensity observations and ground-based spectroscopic measurements
provide first tests of the still-ill-understood, superficial layers in distant
stars. Emphasis will be given to modelling the pulsation dynamics of the
stellar surface layers, the stochastic excitation processes and the associated
dynamics of the turbulent fluxes of heat and momentum.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar
modelling', eds M. Marconi, D. Cardini, M. P. Di Mauro, Astrophys. Space
Sci., in the pres
Stochastic excitation of acoustic modes in stars
For more than ten years, solar-like oscillations have been detected and
frequencies measured for a growing number of stars with various characteristics
(e.g. different evolutionary stages, effective temperatures, gravities, metal
abundances ...).
Excitation of such oscillations is attributed to turbulent convection and
takes place in the uppermost part of the convective envelope. Since the
pioneering work of Goldreich & Keely (1977), more sophisticated theoretical
models of stochastic excitation were developed, which differ from each other
both by the way turbulent convection is modeled and by the assumed sources of
excitation. We review here these different models and their underlying
approximations and assumptions.
We emphasize how the computed mode excitation rates crucially depend on the
way turbulent convection is described but also on the stratification and the
metal abundance of the upper layers of the star. In turn we will show how the
seismic measurements collected so far allow us to infer properties of turbulent
convection in stars.Comment: Notes associated with a lecture given during the fall school
organized by the CNRS and held in St-Flour (France) 20-24 October 2008 ; 39
pages ; 11 figure
Solar-like oscillations in massive main-sequence stars. I. Asteroseismic signatures of the driving and damping regions
Motivated by the recent detection of stochastically excited modes in the
massive star V1449 Aql (Belkacem et al., 2009b), already known to be a
Cephei, we theoretically investigate the driving by turbulent convection. By
using a full non-adiabatic computation of the damping rates, together with a
computation of the energy injection rates, we provide an estimate of the
amplitudes of modes excited by both the convective region induced by the iron
opacity bump and the convective core. Despite uncertainties in the dynamical
properties of such convective regions, we demonstrate that both are able to
efficiently excite modes above the CoRoT observational threshold and the
solar amplitudes. In addition, we emphasise the potential asteroseismic
diagnostics provided by each convective region, which we hope will help to
identify the one responsible for solar-like oscillations, and to give
constraints on this convective zone. A forthcoming work will be dedicated to an
extended investigation of the likelihood of solar-like oscillations across the
Hertzsprung-Russell diagram.Comment: 9 pages, 14 figures, accepter in A&
Mutually Penetrating Motion of Self-Organized 2D Patterns of Soliton-Like Structures
Results of numerical simulations of a recently derived most general
dissipative-dispersive PDE describing evolution of a film flowing down an
inclined plane are presented. They indicate that a novel complex type of
spatiotemporal patterns can exist for strange attractors of nonequilibrium
systems. It is suggested that real-life experiments satisfying the validity
conditions of the theory are possible: the required sufficiently viscous
liquids are readily available.Comment: minor corrections, 4 pages, LaTeX, 6 figures, mpeg simulations
available upon or reques
A spectroscopic analysis of the chemically peculiar star HD207561
In this paper we present a high-resolution spectroscopic analysis of the
chemically peculiar star HD207561. During a survey programme to search for new
roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant
photometric variability on two consecutive nights in the year 2000. The
amplitude spectra of the light curves obtained on these two nights showed
oscillations with a frequency of 2.79 mHz [P~6-min]. However, subsequent
follow-up observations could not confirm any rapid variability. In order to
determine the spectroscopic nature of HD207561, high-resolution spectroscopic
and spectro-polarimetric observations were carried out. A reasonable fit of the
calculated Hbeta line profile to the observed one yields the effective
temperature (Teff) and surface gravity (log g) as 7300 K and 3.7 dex,
respectively. The derived projected rotational velocity (vsin i) for HD207561
is 74 km/sec indicative of a relatively fast rotator. The position of HD207561
in the H-R diagram implies that this is slightly evolved from the main-sequence
and located well within the delta-Scuti instability strip. The abundance
analysis indicates the star has slight under-abundances of Ca and Sc and mild
over-abundances of iron-peak elements. The spectro-polarimetric study of
HD207561 shows that the effective magnetic field is within the observational
error of 100 gauss (G). The spectroscopic analysis revealed that the star has
most of the characteristics similar to an Am star, rather than an Ap star, and
that it lies in the delta-Scuti instability strip; hence roAp pulsations are
not expected in HD207561, but low-overtone modes might be excited.Comment: 8 pages, 7 figures, 3 tables. Accepted for pubblication in MNRA
Frozen spatial chaos induced by boundaries
We show that rather simple but non-trivial boundary conditions could induce
the appearance of spatial chaos (that is stationary, stable, but spatially
disordered configurations) in extended dynamical systems with very simple
dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion
equation in a two-dimensional undulated domain. Concepts from the theory of
dynamical systems, and a transverse-single-mode approximation are used to
describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit
http://www.imedea.uib.es/~victo
A stochastic flow rule for granular materials
There have been many attempts to derive continuum models for dense granular
flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb
plasticity for quasi-2D granular materials to calculate (average) stresses and
slip planes, but we propose a "stochastic flow rule" (SFR) to replace the
principle of coaxiality in classical plasticity. The SFR takes into account two
crucial features of granular materials - discreteness and randomness - via
diffusing "spots" of local fluidization, which act as carriers of plasticity.
We postulate that spots perform random walks biased along slip-lines with a
drift direction determined by the stress imbalance upon a local switch from
static to dynamic friction. In the continuum limit (based on a Fokker-Planck
equation for the spot concentration), this simple model is able to predict a
variety of granular flow profiles in flat-bottom silos, annular Couette cells,
flowing heaps, and plate-dragging experiments -- with essentially no fitting
parameters -- although it is only expected to function where material is at
incipient failure and slip-lines are inadmissible. For special cases of
admissible slip-lines, such as plate dragging under a heavy load or flow down
an inclined plane, we postulate a transition to rate-dependent Bagnold
rheology, where flow occurs by sliding shear planes. With different yield
criteria, the SFR provides a general framework for multiscale modeling of
plasticity in amorphous materials, cycling between continuum limit-state stress
calculations, meso-scale spot random walks, and microscopic particle
relaxation
A 3D study of the photosphere of HD 99563 - I. Pulsation analysis
We have used high-speed spectroscopy of the rapidly oscillating Ap (roAp) star HD 99563 to study the pulsation amplitude and phase behaviour of elements in its stratified atmosphere over one 2.91-d rotation cycle. We identify spectral features related to patches in the surface distribution of chemical elements and study the pulsation amplitudes and phases as the patches move across the stellar disc. The variations are consistent with a distorted non-radial dipole pulsation mode. We measure a 1.6 km s−1 rotational variation in the mean radial velocities of Hα and argue that this is the first observation of Hα abundance spots caused by He settling through suppression of convection by the magnetic field on an oblique rotator, in support of a prime theory for the excitation mechanism of roAp star pulsation. We demonstrate that HD 99563 is the second roAp star to show aspect dependence of blue-to-red running wave line profile variations in Nd iii spots
- …
