332 research outputs found

    The Role of Water in a Dairy Cow\u27s Ration

    Get PDF
    In connection with the investigations by this department on \u27\u27The Effect of Alkali Water on Dairy Cows and Dairy Products\u27\u27 it became evident that the information on the functions of water in the ration of a dairy cow was meager. Furthermore, during this work some clews were obtained which the investigators desired to carry to a conclusion. . . . It is the object of the investigation reported in this bulletin to study the effects of watering the cow at different intervals and in varying amounts upon the amount of food consumed, digestibility of nutrients, amount and composition of feces and urine, amount and composition of milk, composition and quality of butterfat, body temperature and physical condition of cows. Incidentally, the bulletin furnishes some data on the mineral metabolism of the cow

    Predicting trace metal solubility and fractionation in urban soils from isotopic exchangeability

    Get PDF
    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-values as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables

    Covers of acts over monoids II

    Full text link
    In 1981 Edgar Enochs conjectured that every module has a flat cover and finally proved this in 2001. Since then a great deal of effort has been spent on studying different types of covers, for example injective and torsion free covers. In 2008, Mahmoudi and Renshaw initiated the study of flat covers of acts over monoids but their definition of cover was slightly different from that of Enochs. Recently, Bailey and Renshaw produced some preliminary results on the `other' type of cover and it is this work that is extended in this paper. We consider free, divisible, torsion free and injective covers and demonstrate that in some cases the results are quite different from the module case

    Iodine soil dynamics and methods of measurement: a review

    Get PDF
    Iodine is an essential micronutrient for human health: insufficient intake can have multiple effects on development and growth, affecting approximately 1.9 billion people worldwide. Previous reviews have focussed on iodine analysis in environmental and biological samples, however, no such review exists for the determination of iodine fractionation and speciation in soils. This article reviews the geodynamics of both stable 127I and the long-lived isotope 129I (t1/2 ¼ 15.7 million years), alongside the analytical methods for determining iodine concentrations in soils, including consideration of sample preparation. The ability to measure total iodine concentration in soils has developed significantly from rudimentary spectrophotometric analysis methods to inductively coupled plasma mass spectrometry (ICP-MS). Analysis with ICP-MS has been reported as the best method for determining iodine concentrations in a range of environmental samples and soils due to developments in extraction procedures and sensitivity, with extremely good detection limits typically <mg L_1. The ability of ICP-MS to measure iodine and its capabilities to couple on-line separation tools has the significance to develop the understanding of iodine geodynamics. In addition, nuclear-related analysis and recent synchrotron light source analysis are discussed

    Kinetics of uranium(VI) lability and solubility in aerobic soils

    Get PDF
    Uranium may pose a hazard to ecosystems and human health due to its chemotoxic and radiotoxic properties. The long half-life of many U isotopes and their ability to migrate raise concerns over disposal of radioactive wastes. This work examines the long-term U bioavailability in aerobic soils following direct deposition or transport to the surface and addresses two questions: (i) to what extent do soil properties control the kinetics of U speciation changes in soils and (ii) over what experimental timescales must U reaction kinetics be measured to reliably predict long-term of impact in the terrestrial environment? Soil microcosms spiked with soluble uranyl were incubated for 1.7 years. Changes in UVI fractionation were periodically monitored by soil extractions and isotopic dilution techniques, shedding light on the binding strength of uranyl onto the solid phase. Uranyl sorption was rapid and strongly buffered by soil Fe oxides, but UVI remained reversibly held and geochemically reactive. The pool of uranyl species able to replenish the soil solution through several equilibrium reactions is substantially larger than might be anticipated from typical chemical extractions and remarkably similar across different soils despite contrasting soil properties. Modelled kinetic parameters indicate that labile UVI declines very slowly, suggesting that the processes and transformations transferring uranyl to an intractable sink progress at a slow rate regardless of soil characteristics. This is of relevance in the context of radioecological assessments, given that soil solution is the key reservoir for plant uptake

    Agronomic biofortification of leafy vegetables grown in an Oxisol, Alfisol and Vertisol with isotopically labelled selenium (77Se)

    Get PDF
    Selenium biofortification of crops is a proven technology for improving dietary nutrition. This study used isotopically labelled selenate (>99% enriched 77Se) to assess uptake and Se availability to two green vegetables, Brassica napus L (B. napus) and Amaranthus retroflexus L (A. retroflexus) grown in three contrasting Malawi soils: a Vertisol (calcareous), Alfisol (moderately acidic) and Oxisol (acidic). Plants were grown under glasshouse conditions (4 replicates; 6 kg soil per pot) following application of 77Se-enriched selenate at rates equivalent to 0, 10 and 20 g ha−1. Leaves were harvested at fortnightly intervals and the plants were then allowed to re-grow, to simulate cultivation practice. Leaf samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for selenium isotopes (77Se and 78Se). The isotopic data were processed to quantify the contribution to plant Se concentration from the fertilizer and the soil. Both concentration and uptake of the fertilizer 77Se declined sharply with sequential harvests due to progressive fixation of 77Se in the soil rather than exhaustion (by uptake) of the Se applied. Initially the bioavailability of fertilizer Se was three orders of magnitude greater than the soil Se but this declined to the same order of magnitude by the end of the trial. Application of 77Se had no effect on uptake of soil-derived Se. There were marked differences between the three soils studied. The relative bio-availability of the fertilizer Se followed the sequence (Vertisol > Alfisol > Oxisol) but the two crops showed the same trend in decline of fertilizer Se uptake. Thus, fixation of selenium in the soils studied was sufficiently rapid that Se biofortification of green vegetables subject to several harvests would require multiple applications during the growing season

    Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols

    Get PDF
    Iodine deficiency disorders (IDD) in sub-Saharan African countries are related to low dietary I intake and generally combatted through salt iodisation. Agronomic biofortification of food crops may be an alternative approach. This study assessed the effectiveness of I biofortification of green vegetables (Brassica napus L and Amaranthus retroflexus L.) grown in tropical soils with contrasting chemistry and fertility. Application rates of 0, 5 and 10 kg ha−1 I applied to foliage or soil were assessed. Leaves were harvested fortnightly for ~ 2 months after I application before a second crop was grown to assess the availability of residual soil I. A separate experiment was used to investigate storage of I within the plants. Iodine concentration and uptake in sequential harvests showed a sharp drop within 28 days of I application in all soil types for all I application levels and methods. This rapid decline likely reflects I fixation in the soil. Iodine biofortification increased I uptake and concentration in the vegetables to a level useful for increasing dietary I intake and could be a feasible way to reduce IDD in tropical regions. However, biofortification of green vegetables which are subject to multiple harvests requires repeated I applications

    Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia

    Get PDF
    Grain and soil were sampled across a large part of Amhara, Ethiopia in a study motivated by prior evidence of selenium (Se) deficiency in the Region's population. The grain samples (teff, Eragrostis tef, and wheat, Triticum aestivum) were analysed for concentration of Se and the soils were analysed for various properties, including Se concentration measured in different extractants. Predictive models for concentration of Se in the respective grains were developed, and the predicted values, along with observed concentrations in the two grains were represented by a multivariate linear mixed model in which selected covariates, derived from remote sensor observations and a digital elevation model, were included as fixed effects. In all modelling steps the selection of predictors was done using false discovery rate control, to avoid over-fitting, and using an α-investment procedure to maximize the statistical power to detect significant relationships by ordering the tests in a sequence based on scientific understanding of the underlying processes likely to control Se concentration in grain. Cross-validation indicated that uncertainties in the empirical best linear unbiased predictions of the Se concentration in both grains were well-characterized by the prediction error variances obtained from the model. The predictions were displayed as maps, and their uncertainty was characterized by computing the probability that the true concentration of Se in grain would be such that a standard serving would not provide the recommended daily allowance of Se. The spatial variation of grain Se was substantial, concentrations in wheat and teff differed but showed the same broad spatial pattern. Such information could be used to target effective interventions to address Se deficiency, and the general procedure used for mapping could be applied to other micronutrients and crops in similar settings

    Coherent Phonons in Carbon Nanotubes and Graphene

    Full text link
    We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.Comment: 48 pages, 41 figure
    • …
    corecore