97 research outputs found

    A note on the use of the generalized odds ratio in meta-analysis of association studies involving bi- and tri-allelic polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease.</p> <p>Findings</p> <p>For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects.</p> <p>Conclusions</p> <p>For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.</p

    Association between Type 2 Diabetes Loci and Measures of Fatness

    Get PDF
    Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by disturbances of carbohydrate, fat and protein metabolism and insulin resistance. The majority of T2D patients are obese and obesity by itself may be a cause of insulin resistance. Our aim was to evaluate whether the recently identified T2D risk alleles are associated with human measures of fatness as characterized with Dual Energy X-ray Absorptiometry (DEXA). Methodology/Principal Findings: Genotypes and phenotypes of approximately 3,000 participants from cross-sectional ERF study were analyzed. Nine single nucleotide polymorphisms (SNPs) in CDKN2AB, CDKAL1, FTO, HHEX, IGF2BP2, KCNJ11, PPARG, SLC30A8 and TCF7L2 were genotyped. We used linear regression to study association between individual SNPs and the combined allelic risk score with body mass index (BMI), fat mass index (FMI), fat percentage (FAT), waist circumference (WC) and waist to hip ratio (WHR). Significant association was observed between rs8050136 (FTO) and BMI (p = 0.003), FMI (p = 0.007) and WC (p = 0.03); fat percentage was borderline significant (p = 0.053). No other SNPs alone or combined in a risk score demonstrated significant association to the measures of fatness. Conclusions/Significance: From the recently identified T2D risk variants only the risk variant of the FTO gene (rs8050136) showed statistically significant association with BMI, FMI, and WC

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    European American Stratification in Ovarian Cancer Case Control Data: The Utility of Genome-Wide Data for Inferring Ancestry

    Get PDF
    We investigated the ability of several principal components analysis (PCA)-based strategies to detect and control for population stratification using data from a multi-center study of epithelial ovarian cancer among women of European-American ethnicity. These include a correction based on an ancestry informative markers (AIMs) panel designed to capture European ancestral variation and corrections utilizing un-thinned genome-wide SNP data; case-control samples were drawn from four geographically distinct North-American sites. The AIMs-only and genome-wide first principal components (PC1) both corresponded to the previously described North or Northwest-Southeast axis of European variation. We found that the genome-wide PCA captured this primary dimension of variation more precisely and identified additional axes of genome-wide variation of relevance to epithelial ovarian cancer. Associations evident between the genome-wide PCs and study site corroborate North American immigration history and suggest that undiscovered dimensions of variation lie within Northern Europe. The structure captured by the genome-wide PCA was also found within control individuals and did not reflect the case-control variation present in the data. The genome-wide PCA highlighted three regions of local LD, corresponding to the lactase (LCT) gene on chromosome 2, the human leukocyte antigen system (HLA) on chromosome 6 and to a common inversion polymorphism on chromosome 8. These features did not compromise the efficacy of PCs from this analysis for ancestry control. This study concludes that although AIMs panels are a cost-effective way of capturing population structure, genome-wide data should preferably be used when available

    Extent of Height Variability Explained by Known Height-Associated Genetic Variants in an Isolated Population of the Adriatic Coast of Croatia

    Get PDF
    BACKGROUND: Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20~50 SNPs reported by the remaining individual GWA studies explained 3~5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent. CONCLUSIONS/SIGNIFICANCE: We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent

    Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women

    Get PDF
    IMPORTANCE: A recently published study of national data by McGrath et al in 2014 showed increased risk of schizophrenia (SCZ) in offspring associated with both early and delayed parental age, consistent with a U-shaped relationship. However, it remains unclear if the risk to the child is due to psychosocial factors associated with parental age or if those at higher risk for SCZ tend to have children at an earlier or later age. OBJECTIVE: To determine if there is a genetic association between SCZ and age at first birth (AFB) using genetically informative but independently ascertained data sets. DESIGN, SETTING, AND PARTICIPANTS: This investigation used multiple independent genome-wide association study data sets. The SCZ sample comprised 18 957 SCZ cases and 22 673 controls in a genome-wide association study from the second phase of the Psychiatric Genomics Consortium, and the AFB sample comprised 12 247 genotyped women measured for AFB from the following 4 community cohorts: Estonia (Estonian Genome Center Biobank, University of Tartu), the Netherlands (LifeLines Cohort Study), Sweden (Swedish Twin Registry), and the United Kingdom (TwinsUK). Schizophrenia genetic risk for each woman in the AFB community sample was estimated using genetic effects inferred from the SCZ genome-wide association study. MAIN OUTCOMES AND MEASURES: We tested if SCZ genetic risk was a significant predictor of response variables based on published polynomial functions that described the relationship between maternal age and SCZ risk in offspring in Denmark. We substituted AFB for maternal age in these functions, one of which was corrected for the age of the father, and found that the fit was superior for the model without adjustment for the father's age. RESULTS: We observed a U-shaped relationship between SCZ risk and AFB in the community cohorts, consistent with the previously reported relationship between SCZ risk in offspring and maternal age when not adjusted for the age of the father. We confirmed that SCZ risk profile scores significantly predicted the response variables (coefficient of determination R2 = 1.1E-03, P = 4.1E-04), reflecting the published relationship between maternal age and SCZ risk in offspring by McGrath et al in 2014. CONCLUSIONS AND RELEVANCE: This study provides evidence for a significant overlap between genetic factors associated with risk of SCZ and genetic factors associated with AFB. It has been reported that SCZ risk associated with increased maternal age is explained by the age of the father and that de novo mutations that occur more frequently in the germline of older men are the underlying causal mechanism. This explanation may need to be revised if, as suggested herein and if replicated in future studies, there is also increased genetic risk of SCZ in older mothers

    Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes

    Get PDF
    Hair cortisol concentration (HCC) is a promising measure of long-Term hypothalamus-pituitary-Adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables

    Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Aβ42 reduces their differentiation potential

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is characterized by neurodegeneration and changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Owing to varying APP processing, several β-amyloid peptides (Aβ) are generated. In contrast to the form with 40 amino acids (Aβ<sub>40</sub>), the variant with 42 amino acids (Aβ<sub>42</sub>) is thought to be the pathogenic form triggering the pathological cascade in AD. While total-Aβ effects have been studied extensively, little is known about specific genome-wide effects triggered by Aβ<sub>42 </sub>or Aβ<sub>40 </sub>derived from their direct precursor C99.</p> <p>Methods</p> <p>A combined transcriptomics/proteomics analysis was performed to measure the effects of intracellularly generated Aβ peptides in human neuroblastoma cells. Data was validated by real-time polymerase chain reaction (real-time PCR) and a functional validation was carried out using RNA interference.</p> <p>Results</p> <p>Here we studied the transcriptomic and proteomic responses to increased or decreased Aβ<sub>42 </sub>and Aβ<sub>40 </sub>levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix) and proteomic approaches were combined to analyze the cellular response to the changed Aβ<sub>42</sub>- and Aβ<sub>40</sub>-levels. The cells responded to this challenge with significant changes in their expression pattern. We identified several dysregulated genes and proteins, but only the cellular retinoic acid binding protein 1 (CRABP1) was up-regulated exclusively in cells expressing an increased Aβ<sub>42</sub>/Aβ<sub>40 </sub>ratio. This consequently reduced all-trans retinoic acid (RA)-induced differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this effect was specific to the AD typical increase in the Aβ<sub>42</sub>/Aβ<sub>40 </sub>ratio, whereas a decreased ratio did not result in up-regulation of CRABP1.</p> <p>Conclusion</p> <p>We conclude that increasing the Aβ<sub>42</sub>/Aβ<sub>40 </sub>ratio up-regulates CRABP1, which in turn reduces the differentiation potential of the human neuroblastoma cell line SH-SY5Y, but increases cell proliferation. This work might contribute to the better understanding of AD neurogenesis, currently a controversial topic.</p

    A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework.

    Get PDF
    BACKGROUND: There is considerable evidence that many complex traits have a partially shared genetic basis, termed pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr). RESULTS: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is effective in that it restores proper control of the false discovery rate, at very little loss in power. CONCLUSIONS: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping samples in a statistical framework that is dependent on the joint distribution of the two GWAS

    Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia

    Get PDF
    Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders
    corecore