196 research outputs found

    The Clinical Impact of Copy Number Variants in Inherited Bone Marrow Failure Syndromes

    Get PDF
    Inherited bone marrow failure syndromes (IBMFSs) comprise a genetically heterogeneous group of diseases with hematopoietic failure and a wide array of physical malformations. Copy number variants (CNVs) were reported in some IBMFSs. It is unclear what impact CNVs play in patients evaluated for a suspected diagnosis of IBMFS. Clinical and genetic data of 323 patients from the Canadian Inherited Marrow Failure Registry from 2001 to 2014, who had a documented genetic work-up, were analyzed. Cases with pathogenic CNVs (at least 1 kilobasepairs) were compared to cases with other mutations. Genotype-phenotype correlations were performed to assess the impact of CNVs. Pathogenic nucleotide-level mutations were found in 157 of 303 tested patients (51.8%). Genome-wide CNV analysis by single nucleotide polymorphism arrays or comparative genomic hybridization arrays revealed pathogenic CNVs in 11 of 67 patients tested (16.4%). In four of these patients, identification of CNV was crucial for establishing the correct diagnosis as their clinical presentation was ambiguous. Eight additional patients were identified to harbor pathogenic CNVs by other methods. Of the 19 patients with pathogenic CNVs, four had compound-heterozygosity of a CNV with a nucleotide-level mutation. Pathogenic CNVs were associated with more extensive non-hematological organ system involvement

    Impact of aprotinin and renal function on mortality: a retrospective single center analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An estimated up to 7% of high-risk cardiac surgery patients return to the operating room for bleeding. Aprotinin was used extensively as an antifibrinolytic agent in cardiac surgery patients for over 15 years and it showed efficacy in reducing bleeding. Aprotinin was removed from the market by the U.S. Food and Drug Administration after a large prospective, randomized clinical trial documented an increased mortality risk associated with the drug. Further debate arose when a meta-analysis of 211 randomized controlled trials showed no risk of renal failure or death associated with aprotinin. However, only patients with normal kidney function have been studied.</p> <p>Methods</p> <p>In this study, we look at a single center clinical trial using patients with varying degrees of baseline kidney function to answer the question: Does aprotinin increase odds of death given varying levels of preoperative kidney dysfunction?</p> <p>Results</p> <p>Based on our model, aprotinin use was associated with a 3.8-fold increase in odds of death one year later compared to no aprotinin use with p-value = 0.0018, regardless of level of preoperative kidney dysfunction after adjusting for other perioperative variables.</p> <p>Conclusions</p> <p>Lessons learned from our experience using aprotinin in the perioperative setting as an antifibrinolytic during open cardiac surgery should guide us in testing future antifibrinolytic drugs for not only efficacy of preventing bleeding, but for overall safety to the whole organism using long-term clinical outcome studies, including those with varying degree of baseline kidney function.</p

    Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?

    Get PDF
    Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary to, and fit within, protocolized approaches

    Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19

    Get PDF
    Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in an COVID-19 to date, a comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalised COVID-19 patients collected across the hospitalisation period as part of the UK ISARIC4C study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to heathy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention

    Effects of prophylactic knee bracing on patellar tendon loading parameters during functional sports tasks in recreational athletes

    Get PDF
    Purpose This study investigated the efects of prophylactic knee bracing on patellar tendon loading parameters. Methods Twenty recreational athletes (10 male and 10 female) from diferent athletic disciplines performed run, cut and single leg hop movements under two conditions (prophylactic knee brace/no-brace). Lower extremity kinetics and kinematics were examined using a piezoelectric force plate and three-dimensional motion capture system. Patellar tendon loading was explored using a mathematical modelling approach, which accounted for co-contraction of the knee lexors. Tendon loading parameters were examined using 2 (brace) × 3 (movement) × 2 (sex) mixed ANOVAs. Results Tendon instantaneous load rate was signiicantly reduced in female athletes in the run (brace 289.14 BW/s no-brace 370.06 BW/s) and cut (brace 353.17 BW/s/no-brace 422.01 BW/s) conditions whilst wearing the brace. Conclusions Female athletes may be able to attenuate their risk from patellar tendinopathy during athletic movements, through utilization of knee bracing, although further prospective research into the prophylactic efects of knee bracing is required before this can be clinically substantiated

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≄37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≄12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Search for the Λb0→Ληâ€Č\Lambda^0_b \rightarrow \Lambda \eta^\prime and Λb0→Λη\Lambda^0_b \rightarrow \Lambda \eta decays with the LHCb detector

    Get PDF
    A search is performed for the as yet unobserved baryonic Λb→Ληâ€Č\Lambda_b \rightarrow \Lambda \eta^\prime and Λb→Λη\Lambda_b \rightarrow \Lambda \eta decays with 3fb−1fb^{-1} of proton-proton collision data recorded by the LHCb experiment. The B0→KS0ηâ€ČB^0 \rightarrow K_S^0 \eta^\prime decay is used as a normalisation channel. No significant signal is observed for the Λb→Ληâ€Č\Lambda_b \rightarrow \Lambda \eta^\prime decay. An upper limit is found on the branching fraction of B(Λb→Ληâ€Č)<3.1×10−6\mathcal{B}(\Lambda_b \rightarrow \Lambda \eta^\prime)<3.1\times10^{-6}} at 90\% confidence level. Evidence is seen for the presence of the Λb→Λη\Lambda_b \rightarrow \Lambda \eta decay at the level of 3σ3\sigma significance, with a branching fraction B(Λb→Λη)=(9.3−5.3+7.3)×10−6\mathcal{B}(\Lambda_b \rightarrow \Lambda \eta)=(9.3^{+7.3}_{-5.3})\times10^{-6}}.Comment: 22 pages, 6 figures. v2 is published version (very minor revisions
    • 

    corecore