103 research outputs found

    D-Brane Gauge Theories from Toric Singularities and Toric Duality

    Get PDF
    Via partial resolution of Abelian orbifolds we present an algorithm for extracting a consistent set of gauge theory data for an arbitrary toric variety whose singularity a D-brane probes. As illustrative examples, we tabulate the matter content and superpotential for a D-brane living on the toric del Pezzo surfaces as well as the zeroth Hirzebruch surface. Moreover, we discuss the non-uniqueness of the general problem and present examples of vastly different theories whose moduli spaces are described by the same toric data. Our methods provide new tools for calculating gauge theories which flow to the same universality class in the IR. We shall call it ``Toric Duality.''Comment: 38 pages, 6 figures, 2 references added and 1 equation correcte

    KELT-3b: A Hot Jupiter Transiting a V=9.8 Late-F Star

    Get PDF
    We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477 (-0.067, +0.066) M_J, and radius of 1.345 +/- 0.072 R_J, with an orbital period of 2.7033904 +/- 0.000010 days. The host star, KELT-3, is a V=9.8 late F star with M_* = 1.278 (-0.061, +0.063) M_sun, R_* = 1.472 (-0.067, +0.065) R_sun, T_eff = 6306 (-49, +50) K, log(g) = 4.209 (-0.031, +0.033), and [Fe/H] = 0.044 (-0.082, +0.080), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically-identified threshold for radius inflation suggested by Demory & Seager (2011).Comment: 12 pages, 12 figures, accepted to Ap

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Kelt-4Ab: An inflated hot jupiter transiting the bright (V ∼ 10) component of a hierarchical triple

    Get PDF
    We report the discovery of KELT-4Ab, an inflated, transiting Hot Jupiter orbiting the brightest component of ahierarchical triple stellar system. The host star is an F star with Teff =6206 ± 75 K, log g =4.108 ± 0.014, [Fe/H]= -0.116+0.069+0.065, M∗ = 1.201-0.061+0.067 M⊙, and R∗ = 1.603-0.038+0.039 R⊙. The best-fit linear ephemeris is BJDTDB =2456193.29157±0.00021 + E(2.9895936±0.0000048). With a magnitude of V∼10, a planetary radius of 1.699-0.045+0.046 RJ, and a mass of 0.902-0.059+0.060 MJ, it is the brightest host among the population of inflated Hot Jupiters (RP \u3e 1.5RJ), making it a valuable discovery for probing the nature of inflated planets. In addition, its existence within a hierarchical triple and its proximity to Earth (210 pc) provide a unique opportunity for dynamical studies with continued monitoring with high resolution imaging and precision radial velocities. The projected separation between KELT-4A and KELT-4BC is 328±16 AU and the projected separation between KELT-4B and KELT-4C is 10.30±0.74 AU. Assuming face-on, circular orbits, their respective periods would be 3780±290 and 29.4±3.6 years and the astrometric motions relative to the epoch in this work of both the binary stars around each other and of the binary around the primary star would be detectable now and may provide meaningful constraints on the dynamics of the system

    Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease

    Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron–lipid amphiphiles

    Get PDF
    Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron–lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron–lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2nd generation systems and micelles for the 3rd and 4th generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron–lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer

    The Lancet Breast Cancer Commission: tackling a global health, gender, and equity challenge

    Get PDF
    Breast cancer is an increasing global health, gender, socioeconomic, and equity challenge. In 2020, 2·3 million women were diagnosed with breast cancer and there were 685 000 deaths worldwide.1 Not only is breast cancer the highest incident cancer globally, but it is also the most prevalent, causing more disability-adjusted life-years lost than any other malignancy. Tackling breast cancer is a formidable task for health-care systems, policy makers, and other stakeholders. The numbers of people with metastatic breast cancer who go uncounted are concerning. Cancer registries record patients initially presenting with de-novo metastatic breast cancer, but data on those who develop metastases after a diagnosis of early breast cancer are scarce. In a world focused on breast cancer cure, these uncounted people living with metastatic disease face abandonment and stigma

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies
    corecore