748 research outputs found

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India

    Get PDF
    The study of ethnobotany relating to any tribe is in itself a very intricate or convoluted process. This paper documents the traditional knowledge of medicinal plants that are in use by the indigenous Jaintia tribes residing in few isolated pockets of northeast India. The present study was done through structured questionnaires in consultations with the tribal practitioners and has resulted in the documentation of 39 medicinal plant species belonging to 27 families and 35 genera. For curing diverse form of ailments, the use of aboveground plant parts was higher (76.59%) than the underground plant parts (23.41%). Of the aboveground plant parts, leaf was used in the majority of cases (23 species), followed by fruit (4). Different underground plant forms such as root, tuber, rhizome, bulb and pseudo-bulb were also found to be in use by the Jaintia tribe as a medicine. Altogether, 30 types of ailments have been reported to be cured by using these 39 medicinal plant species. The study thus underlines the potentials of the ethnobotanical research and the need for the documentation of traditional ecological knowledge pertaining to the medicinal plant utilization for the greater benefit of mankind

    Gating at the Mouth of the Acetylcholine Receptor Channel: Energetic Consequences of Mutations in the αM2-Cap

    Get PDF
    Gating of nicotinic acetylcholine receptors from a C(losed) to an O(pen) conformation is the initial event in the postsynaptic signaling cascade at the vertebrate nerve-muscle junction. Studies of receptor structure and function show that many residues in this large, five-subunit membrane protein contribute to the energy difference between C and O. Of special interest are amino acids located at the two transmitter binding sites and in the narrow region of the channel, where C↔O gating motions generate a low↔high change in the affinity for agonists and in the ionic conductance, respectively. We have measured the energy changes and relative timing of gating movements for residues that lie between these two locations, in the C-terminus of the pore-lining M2 helix of the α subunit (‘αM2-cap’). This region contains a binding site for non-competitive inhibitors and a charged ring that influences the conductance of the open pore. αM2-cap mutations have large effects on gating but much smaller effects on agonist binding, channel conductance, channel block and desensitization. Three αM2-cap residues (αI260, αP265 and αS268) appear to move at the outset of channel-opening, about at the same time as those at the transmitter binding site. The results suggest that the αM2-cap changes its secondary structure to link gating motions in the extracellular domain with those in the channel that regulate ionic conductance

    Rationale and design of BISTRO: a randomized controlled trial to determine whether bioimpedance spectroscopy guided fluid management maintains residual kidney function in incident haemodialysis patients

    Get PDF
    Background: Preserved residual kidney function (RKF) and normal fluid status are associated with better patient outcomes in incident haemodialysis patients. The objective of this trial is to determine whether using bioimpedance technology in prescribing the optimal post-dialysis weight can reduce the rate of decline of RKF and potentially improve patient outcomes. Methods/Design: 516 patients commencing haemodialysis, aged >18 with RKF of > 3 ml/min/1.73 m2 or a urine volume >500 ml per day or per the shorter inter-dialytic period will be consented and enrolled into a pragmatic, open label, randomized controlled trial. The intervention is incorporation of bioimpedance spectroscopy (BI) determination of normally hydrated weight to set a post-dialysis target weight that limits volume depletion, compared to current standard practice. Clinicians and participants will be blinded to BI measures in the control group and a standardized record capturing management of fluid status will be used in all participants. Primary outcome is preservation of residual kidney function assessed as time to anuria (≤100 ml/day or ≤200 ml urine volume in the short inter-dialytic period). A sample size of 516 was based upon a cumulative incidence of 30% anuria in the control group and 20% in the treatment group and 11% competing risks (death, transplantation) over 10 months, with up to 2 years follow-up. Secondary outcomes include rate of decline in small solute clearance, significant adverse events, hospitalization, loss of vascular access, cardiovascular events and interventions, dialysis efficacy and safety, dialysis-related symptoms and quality of life. Economic evaluation will be carried out to determine the cost-effectiveness of the intervention. Analyses will be adjusted for patient characteristics and dialysis unit practice patterns relevant to fluid management. Discussion: This trial will establish the added value of undertaking BI measures to support clinical management of fluid status and establish the relationship between fluid status and preservation of residual kidney function in incident haemodialysis patients. Trial registration: ISCCTN Number: 11342007, completed 26/04/2016; NIHR Portfolio number: CPMS31766; Sponsor: Keele University Keywords: Fluid status, Body composition, Residual kidney function, Haemodialysis, Bioimpedance, Fluid management, Health economic

    Tyrosine Kinase ETK/BMX Is Up-Regulated in Bladder Cancer and Predicts Poor Prognosis in Patients with Cystectomy

    Get PDF
    Deregulation of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors. In this report, we demonstrated that ETK expression is progressively increased during bladder cancer progression. We found that down-regulation of ETK in bladder cancer cells attenuated STAT3 and AKT activity whereas exogenous overexpression of ETK had opposite effects, suggesting that deregulation of ETK may attribute to the elevated activity of STAT3 and AKT frequently detected in bladder cancer. The survival, migration and invasion of bladder cancer cells were significantly compromised when ETK expression was knocked down by a specific shRNA. In addition, we showed that ETK localizes to mitochondria in bladder cancer cells through interacting with Bcl-XL and regulating ROS production and drug sensitivity. Therefore, ETK may play an important role in regulating survival, migration and invasion by modulating multiple signaling pathways in bladder cancer cells. Immunohistochemistry analysis on tissue microarrays containing 619 human bladder tissue samples shows that ETK is significantly upregulated during bladder cancer development and progression and ETK expression level predicts the survival rate of patients with cystectomy. Taken together, our results suggest that ETK may potentially serve as a new drug target for bladder cancer treatment as well as a biomarker which could be used to identify patients with higher mortality risk, who may be benefited from therapeutics targeting ETK activity

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala.

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Behavioural adaptation to psychological stress is dependent on neuronal plasticity and dysfunction at this cellular level may underlie the pathogenesis of affective disorders such as depression and post-traumatic stress disorder. Taking advantage of genome-wide microarray assay, we performed detailed studies of stress-affected transcripts in the amygdala - an area which forms part of the innate fear circuit in mammals. Having previously demonstrated the role of lipocalin-2 (Lcn-2) in promoting stress-induced changes in dendritic spine morphology/function and neuronal excitability in the mouse hippocampus, we show here that the Lcn-2 gene is one of the most highly upregulated transcripts detected by microarray analysis in the amygdala after acute restraint-induced psychological stress. This is associated with increased Lcn-2 protein synthesis, which is found on immunohistochemistry to be predominantly localised to neurons. Stress-naïve Lcn-2(-/-) mice show a higher spine density in the basolateral amygdala and a 2-fold higher rate of neuronal firing rate compared to wild-type mice. Unlike their wild-type counterparts, Lcn-2(-/-) mice did not show an increase in dendritic spine density in response to stress but did show a distinct pattern of spine morphology. Thus, amygdala-specific neuronal responses to Lcn-2 may represent a mechanism for behavioural adaptation to psychological stress.Marie Curie Excellence Grant from the European Commission.Medical Research Council Project GrantCOST Action ECMNe

    Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    Get PDF
    The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems.We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU(0.03)) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere.The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems
    corecore