127 research outputs found

    Supercurrent in p-wave Holographic Superconductor

    Full text link
    The p-wave and p+ipp+ip-wave holographic superconductors with fixed DC supercurrent are studied by introducing a non-vanishing vector potential. We find that close to the critical temperature TcT_c of zero current, the numerical results of both the p wave model and the p+ipp+ip model are the same as those of Ginzburg-Landau (G-L) theory, for example, the critical current jc(TcT)3/2j_c \sim (T_c-T)^{3/2} and the phase transition in the presence of a DC current is a first order transition. Besides the similar results between both models, the p+ipp+ip superconductor shows isotropic behavior for the supercurrent, while the p-wave superconductor shows anisotropic behavior for the supercurrent.Comment: Version 4. 18 pages, 9figures. New results of the anisotropic behavior for the supercurrent in p-wave model added. Accepted by PR

    d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet

    Full text link
    A d-wave holographic superconductor is studied under a constant magnetic field by perturbation method, we obtain both droplet and triangular vortex lattice solution. The results are the same as the s-wave holographic superconductor. The non-Abelian holographic superconductor with p+ipp+ip-wave background is also studied under magnetic field, unlike the d-wave and s-wave models, we find that the non-Abelian model has only droplet solution.Comment: Version2, 12 pages,2 figures. Accepted by PR

    One dimensional s-wave holographic superconductor with supercurrent

    Full text link
    We study the one dimensional s-wave holographic superconductor by turning on the vector potential AxA_x in the bulk, which behaves as Ax=Ax(0)lnz+Ax(1)A_x=A_x^{(0)} \ln z+ A_x^{(1)} on the boundary. By solving the model with fixed Ax(0)A_x^{(0)}, we find that if we identify the Ax(0)A_x^{(0)} with the supercurrent jxj_x of the holographic superconductor, the results agree with the Gindzburg- Landau theory. For example, Ax(0)A_x^{(0)} will break the superconductivity, and the critical value of Ax(0)A_x^{(0)} is proportional to (TcT)3/2(T_c-T)^{3/2}.Comment: 13 pages, 8figures, references adde

    Continuous Hawking-Page transitions in Einstein-scalar gravity

    Get PDF
    We investigate continuous Hawking-Page transitions in Einstein's gravity coupled to a scalar field with an arbitrary potential in the weak gravity limit. We show that this is only possible in a singular limit where the black-hole horizon marginally traps a curvature singularity. Depending on the subleading terms in the potential, a rich variety of continuous phase transitions arise. Our examples include second and higher order, including the Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton, the condition for a continuous phase transition lead to (asymptotically) linear-dilaton background. We obtain the scaling laws of thermodynamic functions, as well as the viscosity coefficients near the transition. In the limit of weak gravitational interactions, the bulk viscosity asymptotes to a universal constant, independent of the details of the scalar potential. As a byproduct of our analysis we obtain a one-parameter family of kink solutions in arbitrary dimension d that interpolate between AdS near the boundary and linear-dilaton background in the deep interior. The continuous Hawking-Page transitions found here serve as holographic models for normal-to superfluid transitions.Comment: 35 pages + appendice

    M5-branes from gauge theories on the 5-sphere

    Get PDF
    We use the 5-sphere partition functions of supersymmetric Yang-Mills theories to explore the (2,0) superconformal theory on S^5 x S^1. The 5d theories can be regarded as Scherk-Schwarz reductions of the 6d theory along the circle. In a special limit, the perturbative partition function takes the form of the Chern-Simons partition function on S^3. With a simple non-perturbative completion, it becomes a 6d index which captures the degeneracy of a sector of BPS states as well as the index version of the vacuum Casimir energy. The Casimir energy exhibits the N^3 scaling at large N. The large N index for U(N) gauge group also completely agrees with the supergravity index on AdS_7 x S^4.Comment: 44 pages, 1 figure, v4: ref added, clarified weak/strong coupling behaviors of large N free energy, minor improvements, version to be published in JHE

    Pure Leptonic Gauge Symmetry, Neutrino Masses and Dark Matter

    Get PDF
    A possible extension of the Standard Model to include lepton number as local gauge symmetry is investigated. In such a model, anomalies are canceled by two extra fermions doublet. After leptonic gauge symmetry spontaneously broken, three active neutrinos may acquire non-zero Majorana masses through the modified Type-II seesaw mechanism. Constraints on the model from electro-weak precision measurements are studied. Due to the Z2Z_2 discrete flavor symmetry, right-handed Majorana neutrinos can serve as cold dark matter candidate of the Universe. Constraint from dark matter relic abundance is calculated.Comment: 13 pages, 2 figures; typos corrected, comments and references added, to appear in Phys. Lett.

    Yukawa Textures, Neutrino Masses and Horava-Witten M-Theory

    Get PDF
    We consider the Horava-Witten based model with 5-branes situated near the distant orbifold plane and with vanishing instanton numbers on the physical plane. This model has a toric fibered Calabi-Yau with del Pezzo base dP_7 which allows three generations with Standard Model gauge group at the GUT scale. Previous analysis showed that the quark hierarchy at the electroweak scale could be achieved qualitatively without undue fine tuning due to the effects of the 5-branes on the Kahler potential. We extend here this analysis to include the leptons. A new mechanism is introduced to obtain neutrino masses by assuming massless right handed neutrinos exist in the particle spectrum, which allows a cubic holomorphic term to exist in the Kahler metric, l_L*H_2*nu_R, scaled by the 11D Planck mass. After transferring this term to the superpotential, this term gives rise to neutrino masses of the correct size at the electroweak scale. With natural choices of the Yukawa and Kahler matrix entries, it is possible to fit all mass, CKM and MNS experimental data. The model predicts mu -> e + gamma decay at a rate that should be detectable for much of the SUSY parameter space in the next round of experiments.Comment: 24 pages, 4 figures. Minor changes, references added. Some discussion on neutrino mass generating mechanism added; no other change. Accepted for publication in Nucl. Phys.

    Anomalous U(1) symmetry and lepton flavor violation

    Full text link
    We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs through the renormalization group evolution of the soft SUSY breaking parameters between the string scale and the U(1)_A breaking scale. We derive general expressions for the evolution of these parameters in the presence of higher dimensional operators. Several sources for the flavor violation are identified: flavor-dependent contributions to the soft masses from the U(1)_A gaugino, scalar mass corrections proportional to the trace of U(1)_A charge, non-proportional A-terms from vertex corrections, and the U(1)_A D-term. Quantitative estimates for the decays \mu -> e \gamma and \tau -> \mu \gamma are presented in supergravity models which accommodate the relic abundance of neutralino dark matter.Comment: References added, typos corrected, 28 pages LaTeX, includes 14 eps figure

    A new parametric equation of state and quark stars

    Full text link
    It is still a matter of debate to understand the equation of state of cold supra-nuclear matter in compact stars because of unknown on-perturbative strong interaction between quarks. Nevertheless, it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect the inter-cluster interaction to share some general features to nucleon-nucleon interaction. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume Gaussian form wave function. With this parameterizing, Tolman-Oppenheimer-Volkoff equation is solved with reasonable constrained parameter space to give mass-radius relation of crystalline solid quark star. With baryon densities truncated at 2 times nuclear density at surface and range of interaction fixed at 2fm we can reproduce similar mass-radius relation to that obtained with bag model equations of state. The maximum mass ranges from about 0.5 to 3 solar mass. Observed maximum pulsar mass (about 2 solar mass) is then used to constrain parameters of this simple interaction potential.Comment: 5 pages, 2 figure

    Paired and clustered quantum Hall states

    Full text link
    We briefly summarize properties of quantum Hall states with a pairing or clustering property. Their study employs a fundamental connection with parafermionic Conformal Field Theories. We report on closed form expressions for the many-body wave functions and on multiplicities of the fundamental quasi-hole excitations.Comment: 13 pages, Contribution to the proceedings of the NATO Advanced Research Workshop "Statistical Field Theories" Como (Italy), June 18-23 200
    corecore