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Abstract

We consider the Horava-Witten based model with 5-branes situated near the distant orbifold

plane and with vanishing instanton numbers on the physical plane. This model has a toric fibered

Calabi-Yau with del Pezzo base dP7 which allows three generations with Standard Model gauge

group at the GUT scale. Previous analysis showed that the quark hierarchy at the electroweak

scale could be achieved qualitatively without undue fine tuning due to the effects of the 5-branes

on the Kahler potential. We extend here this analysis to include the leptons. A new mechanism

is introduced to obtain neutrino masses by assuming massless right handed neutrinos exist in the

particle spectrum, which allows a cubic holomorphic term to exist in the Kahler metric, lLH2νR,

scaled by the 11D Planck mass. After transferring this term to the superpotential, this term gives

rise to neutrino masses of the correct size at the electroweak scale. With natural choices of the

Yukawa and Kahler matrix entries, it is possible to fit all mass, CKM and MNS experimental data.

The model predicts µ → e + γ decay at a rate that should be detectable for much of the SUSY

parameter space in the next round of experiments.
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I. INTRODUCTION

While the Standard Model (SM) has been successful in fitting all current accelerator

data, the origin of the quark and lepton mass spectrum remains a puzzle requiring further

understanding. Thus the explanation of the striking hierarchy of masses (e. g. the up to

top quark mass ratio is mu/mt ≃ 10−5) and the hierarchy of elements in the CKM matrix

all are beyond the scope of the Standard Model. The matter has been further exacerbated

by the discovery of neutrino masses, since now in addition there is need for an explanation

of the MNS matrix as well as the origin of the very tiny neutrino masses. A large number

of suggestions exist in the literature attempting to explain these properties of quarks and

leptons. One approach, starting perhaps with the work of Georgi and Jarlskog [1], suggests

that the fundamental origin of quark and lepton masses is to be found at high energies, i. e.

the GUT scale, MG
∼= 3× 1016 GeV, and the complexity we see at low energies arises from

the running of the renormalization group equations (RGEs) down to the electroweak scale.

This approach, however, has not appeared to be too promising. Thus a general analysis

of the u and d Yukawa matrices with five zeros at the GUT scale given in [2] is shown

in Table 1. Here λ = 0.2 is the Wolfenstein parameter, and the choice of Table 1, when

evaluated at the electroweak scale does indeed agree approximately with the quark masses

and CKM matrix. However, to generate the experimental hierarchy one has to have entries

at the GUT scale of size λ6 ≃ 10−5, showing that the problem at the GUT scale is very

much the same as at the electroweak scale.

Table 1. Approximate Yukawa textures at MG for YU and YD where λ=0.2 [2].

YU =











0
√
2λ6 0

√
2λ6

√
3λ4 λ2

0 λ2 1











; YD =











0 2λ4 0

2λ4 2λ3 0

0 0 1











.

String theory represents at present the only model that has been proposed which in

principle can calculate the Yukawa matrices from first principles. Unfortunately, math-

ematical tools to explicitly do this have not yet been developed. In spite of this, the
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general formulation of the Yukawa problem in string theory opens new windows for

seeing how the quark and lepton hierarchies might naturally have arisen, approaches

not available in standard SUGRA GUT theory. In particular, the Horava-Witten het-

erotic M-Theory [3, 4], which offers a natural explanation of why grand unification

can occur at MG rather than the Planck scale MP , has had significant development

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] giving rise

to three generation models with the SM low energy gauge group SU(3) × SU(2) × U(1).

In this model, physical space is one of two 10 dimensional (10D) orbifold planes separated

by a finite distance in the 11th dimension, the theory obeying S1/Z2 symmetry in the 11th

dimension. Six of the 10 dimensions are compactified to a Calabi-Yau (C-Y) threefold, the

remaining four being Minkowski space. An array of six dimensional 5-branes perpendicular

to the 11th dimension can exist between the two orbifold planes. While it is not possible

to make first principle calculations, one can examine whether the general structure of such

a theory can replicate the SM at low energy. In this connection, it was seen in [28] that

the general structure of the quark mass matrices can arise without undue fine tuning if the

5-branes lie close to the distant orbifold plane, and the instanton number of the physical

orbifold plane, β(0) vanished. It was explicitly shown in [28] that a three generation model

with β(0) = 0 and SM gauge group indeed can exist for a torus fibered Calabi-Yau (with

two sections) with del Pezzo base dP7. The quark and CKM matrix were calculated for a

model of this type in agreement with data, and it was shown also in approximate analytic

calculations how the mass hierarchies can arise without undue fine tuning due to the general

structure of the Kahler potential.

In this paper we extend the analysis of [28] in two directions. We first include the charged

lepton mass matrix and obtain the mass hierarchies experimentally seen. We then consider

neutrino masses. The conventional way for accounting for the very small mass of neutrinos

is the seesaw mechanism [29] which gives rise to Majorana neutrino masses. We consider

here, however, a new way of achieving small neutrino masses based on the structure of the

Kahler potential. This mechanism is different from the seesaw mechanism, and gives rise to

Dirac masses for the neutrinos. Neutrino masses and the MNS matrix [30] are calculated

consistent with the large mixing angle (LMA) analysis of the solar, atmospheric, reactor and

long baseline neutrino data (e.g. see [31] for a global analysis in the context of three-neutrino

oscillations). Because of the appearance of the MNS matrix, lepton flavor violation processes,
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which are absent in the SM, will occur in this model. SM contributions here are too small

to be observed experimentally. However, SUSY contributions are much larger. We have

studied the µ → e + γ decay in this model including all possible contributions. For large

tan β, the branching ratio for µ→ e+γ is close to the current experimental bound [32], and

would be accessible to future experiments [33, 34]. A summary of some of the above results

was given in [35].

Our paper is organized as follows. In Sec. 2 we give a brief review of M-Theory, and the

basic results obtained in [28] for torus fibered Calabi-Yau manifolds. In Sec. 3 we review and

update the results of [28] for the quark masses and extend this analysis to the lepton sector.

In Sec. 4 we introduce the new mechanism to obtain small neutrino masses and calculate

the masses and mixing angles for this model. In Sec. 5 we present our calculation for the

µ→ e+ γ decay. Finally, conclusions are given in Sec. 6.

II. HORAVA-WITTEN KAHLER POTENTIAL

The Horava-Witten M-Theory is concerned with 11 dimensional supergravity on an orb-

ifold M10 × S1/Z2, where Z2 is reflection of the 11th coordinate. One can think of this

space as an 11 dimensional space M11 bounded by two 10 dimensional orbifold planes M10

at x11 = 0 and πρ. In the simplest case, M10 is the product space M4 × X where M4 is

Minkowski space and X is a (compact) C-Y threefold, the physical world living on one of the

orbifold planes (e.g. x11 = 0), the other orbifold plane being a “hidden” sector. In addition,

there may be six dimensional 5-branes lying along x11 at bulk points xn with 0 < xn < πρ,

parallel to the orbifold planes, each with four dimensions spanning M4, the additional two

dimensions wrapped around a holomorphic curve in the Calabi-Yau space. The construction

of a consistent theory involves a remarkable set of interlocking constraints due to anomaly

cancellation, gauge invariance, and local supersymmetry leading naturally to a theory which

possesses a number of properties appropriate for phenomenology. Thus there must be E8

gauge interactions with chiral multiplets on eachM10 orbifold plane (SO(32) being excluded)

which can easily be broken on the physical plane to the SM group by Wilson lines. The 10D

gauge coupling constant, λ, is uniquely determined in terms of the 11D Planck mass, κ−2/9,

leading to the result that the fundamental scale of nature, the 11D Planck mass, is O(MG),

and explaining why grand unification occurs at MG rather than the 4D Planck mass (which
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is a derived quantity). Finally, a consistent theory exists only as a quantum theory (the

classical theory being inconsistent), something one would hope might be true for any funda-

mental theory. Much progress has been made in showing what the low energy structure of

such a theory might be, and models with three generations of quarks and leptons obeying the

SM gauge group have been constructed. While the details of the construction of the theory

given in [3, 4] is rather intricate, it is possible to see how the different elements interact to

produce a physically interesting model and so we first briefly summarize this construction.

We then give the relevant formulae needed to examine the low energy structure. Details of

the latter can be found in [20], and for the specific model considered here in [28].

The field content of 11D supergravity is the metric gIJ , the gravitino ψIJ , the three form

CIJK and its field strength GIJKL. (In lowest order GIJKL = dICJKL.) The Bose part of

the Lagrangian is :

LS =
1

κ2

∫

M11

d11x
√
g

(

−1

2
R− 1

48
GIJKLG

IJKL

−
√
2

3456
ǫI1I2...I11CI1I2I3GI4...I7GI8...I11

)

. (1)

where the field strengths obey the field equations DIGIJKL = 0, and the Bianchi identity

dGIJKLM = 0. Here κ is the 11D gravitational constant. The Horava-Witten theory comes

about as follows. While in a smooth manifold 11D supergravity has no anomalies, on an

orbifold anomalies arise at the fixed points x = 0 and x = πρ. To cancel these, it is necessary

to put Yang Mills multiplets on each M10 orbifold plane, and the cancellation occurs only

if the gauge group on each manifold is (the phenomenologically desirable) E8. To lowest

order, the Yang Mills Lagrangian on each M10 reads then:

LYM = − 1

λ2

∫

M10

d10x
√
g tr

(

1

4
FABF

AB +
1

2
χ̄ΓADAχ

)

. (2)

where A,B = 1, 2 . . .10, and χ is the associated gaugino. However, Eq. (2) is not locally

supersymmetric, and one must proceed in the usual fashion to add additional interactions

and modifications of the transformation laws to achieve local supersymmetry. As usual,

this involves coupling the gravitino to the Yang Mills supercurrent. However, unlike the

case where the Yang Mills and supergravity multiplets live in the same space, the gravitino

here lives in the 11D bulk, while the Yang Mills multiplet is constrained to live in 10D. For

this situation, a locally supersymmetric Yang Mills theory cannot be achieved simply by
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adding interactions on the orbifold plane. It turns out that a supersymmetric theory can be

achieved only by modifying the Bianchi identities to read

dG11ABCD = 8π2
√
2
κ2

λ2
ΣN+1

0 J (n)δ(x11 − xn). (3)

where x0 = 0, xN+1 = πρ and xn, n = 1 . . . N are the positions of the five branes,

J (0,N+1) = − 1

16π2

(

trF ∧ F − 1

2
trR ∧R

)

x11=0,πρ

. (4)

and J (n), n = 1 . . . N are sources from the 5-branes. With Eq.(3), the total supergravity +

(modified) Yang Mills Lagrangian can be made locally supersymmetric. However, having

gained supersymmetry, one has lost Yang Mills gauge invariance (!). For while Eq.(3) implies

that GABCD is gauge invariant, the corresponding potential C11AB now is not, i.e. under a

Yang Mills gauge transformation one has

δC11AB = − κ2

6
√
2λ2

[

tr
(

ǫFABδ(x
11)
)

+ tr
(

ǫFABδ(x
11 − πρ)

)]

. (5)

which implies the C ∧G∧G term of Eq.(1) is not gauge invariant. Thus the classical theory

is not gauge invariant, and a consistent classical theory does not exist. However, in the

quantum theory, there is in addition the 10D Majorana-Weyl anomaly, and due to unique

features of the E8 group (!) can cancel the loss of gauge invariance of the “Green-Schwarz”

C ∧G ∧G term provided

λ2 = 2π(4πκ)2/3. (6)

Thus only a consistent quantum theory can be built, and this quantum theory determines

the 10D gauge coupling constant in terms of the 11D gravitational constant.

Eq.(6) leads immediately to interesting phenomenological consequences. For compact-

ifying M11 on a Calabi-Yau manifold, one has to lowest order for the 4D gauge coupling

constant and Newton constant [5]

αG =
(4πκ2)2/3

2V ; GN =
κ2

16π2Vρ (7)

where V is the Calabi-Yau volume. Setting V1/6 = 1/MG (so that grand unification occurs at

the compactification scale as required by the LEP data) and using αG = 1/24, one finds that

the fundamental 11D Planck mass is κ−2/9 ∼= 2MG and πρ−1 ∼= 4.7× 1015 GeV. Alternately

one may say that the 11D Planck mass is the fundamental scale and it sets the GUT scale,
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while the largeness of the 4D Planck mass is due mostly to accidental 4π factors arising in

the analysis.

We now summarize the basic formulae of [20] and [28] needed to build a phenomenolog-

ically acceptable theory. The sources J (n) of Eq. (3) play an important role in building a

model. Thus if integrated over a set of independent 4 cycles C4i, they define integer charges:

β
(n)
i =

∫

C4i

J (n) (8)

and Eq.(3) then implies Σβ
(n)
i = 0. Here β

(0)
i and β

(N+1)
i are the instanton charges on

the orbifold planes and β
(n)
i (n = 1 . . . N) are the magnetic charges of the 5-branes. The

existence of non-zero instanton Yang Mills fields with gauge group G on the orbifold plane

implies that E8 breaks into G×H where H is the remaining symmetry at the GUT scale of

the physical theory. We chose here G = SU(5) so that H = SU(5)1.

Chiral matter arises from the components of the Yang Mills multiplet in the

Calabi-Yau part of the M10 orbifold [20]. Thus labeling the C-Y indices by holomorphic

(anti-holomorphic) coordinates a(ā) = 1, 2, 3, then one can expand e.g. Fµb̄ in terms of a

basis set of functions uxI in the C-Y space (I is a family index and x a representation index),

the coefficients in the Minkowski space being the scalar components of the chiral multiplets

C(R)Ip (where R is the representation):

Fµb̄ =
√
2παG

∑

R

uxIb̄(R) Txp(R)(DµC(R))
Ip. (9)

In terms of these quantities, one then defines the metric

GIJ(a
i;R) =

1

vV

∫

X

√
ggab̄uIax(R)u

x
Jb̄(R) (10)

and the Yukawa couplings [20]

λIJK(R1, R2, R3) =

∫

X

Ω ∧ uxI (R1) ∧ uyJ(R2) ∧ uzK(R3)f
(R1,R2,R3)
x,y,z (11)

where Ω is the covariantly constant (3,0) form, f projects out the gauge singlet parts, and

V ≡ vV is the volume of the Calabi-Yau space while v is the coordinate volume:

V =
1

v

∫

X

d6x
√
g; v =

∫

X

d6x (12)

1 Recently, an alternate choice, G = SU(4) and H = SO(10) has been considered by A. E. Faraggi and

R. S. Garavuso [36, 37].
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In addition one defines the S, T i and 5-brane moduli by

Re(S) = V ; ReT i = V −1/3Rai; ReZn = zn (13)

where the modulus R is the orbifold radius divided by ρ and zn = xn/πρ. V can be expressed

in terms of the ai moduli by V (a) = 1
6
dijka

iajak where dijk are the Calabi-Yau intersection

numbers :

dijk =

∫

X

ωi ∧ ωj ∧ ωk (14)

Following the techniques of [5], the field equations and Bianchi identities in Eq.(3) were

solved in the presence of 5-branes to leading order O(κ2/3) [20] leading to an effective four

dimensional Lagrangian at compactification scale MG. We now state the results that were

obtained. The gauge kinetic functions on the orbifold planes are given by

f (1) = S + ǫT i

(

β
(0)
i +

N
∑

n=1

(1− Zn)
2β

(n)
i

)

f (2) = S + ǫT i

(

β
(N+1)
i +

N
∑

n=1

Z2
nβ

(n)
i

)

(15)

where

ǫ =
( κ

4π

)2/3 2π2ρ

V2/3
(16)

The matter Kahler potential, K = ZIJC̄ICJ , on the physical orbifold plane at x11 = 0 has

the Kahler metric

ZIJ = e−KT /3

[

GIJ − ǫ

2V
Γ̃i
IJ

N+1
∑

n=0

(1− zn)
2β

(n)
i

]

(17)

where

KT = − ln[
1

6
dijk(T

i + T̄ i)(T j + T̄ j)(T k + T̄ k)] (18)

Γ̃i
IJ = Γi

IJ − (T i + T̄ i)GIJ − 2

3
(T i + T̄ i)(T k + T̄ k)KTkjΓ

j
IJ (19)

and

KT ij =
∂2KT

∂Ti∂T̄ j
; Γi

IJ = Kij
T

∂GIJ

∂T j
(20)

The Yukawa matrices are

YIJK = 2
√
2παGλIJK ≃ 1.02λIJK (21)

for αG = 1/24. The Kahler metric on the distant orbifold plane at x11 = πρ is given by

Eq.(17) with zn → (1− zn).
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III. YUKAWA TEXTURES

The Yukawa couplings are given in Eqs.(11) and (21) as integrals over the C-Y space.

A priori there is no reason to suggest that a hierarchy such as Table 1 should arise and

one expects that the non-zero entries to be O(1). Similarly, one expects a priori that the

non-zero elements of GIJ in Eq.(10) be of O(1). However, a mild hierarchy can develop in

the Kahler metric of Eq. (17) if the 5-branes all lie close to the distant orbifold plane, i. e.

dn = 1−zn ∼= 0.1, and provided also β(0) = 0. Then the second term will be small compared

to the first (ǫ ∼= 0.9), and the model of [28] assumed that GIJ contributes only to the first two

generations of the u quark and dL (which appear together in the SU(5) 10 representation)

but to all generations of dR, while the second term contributes to all generations but is then

dominant for the third generation of uL, uR, dL. (That a C-Y manifold exits with β(0) = 0

with three generations and a SM gauge group is non-trivial and was explicitly shown to be

possible in [28].) When the Kahler metric was diagonalized to a unit matrix, it was seen that

this idea was sufficient to generate a satisfactory explanation of the more extreme Yukawa

hierarchies at the electroweak scale, and we extend this idea here to the lepton sector. Thus

the Kahler metric has the general form

ZF = fT











1 O(1) O(d2)

O(1) O(1) O(d2)

O(d2) O(d2) O(d2)











(22)

where F stands for the different matter fields: q = uL, uR, dL, l = (νL, eL) and e = eR and fT

is given from Eq.(17) to be e−KT /3. We assume that GIJ has non-zero elements of O(1) for

all generations of dR. (For convenience, we’ve re-scaled the ZF
11 entry in Eq. (22) to 1.) The

hierarchy then arises when one transforms the ZIJ to the unit matrix by a unitary matrix

U and a diagonal scaling matrix S to obtain the canonical matter fields CI
F
′
:

CI
F =

1√
fT

(U (F )S(F ))IJC
J
F

′
(23)

where

diagS(F ) = (λ
−1/2
F1 , λ

−1/2
F2 , λ

−1/2
F3 ). (24)

and λF i, i = 1, 2, 3 are the eigenvalues of ZF
IJ/fT . A similar transformation is made on the

Higgs fields contribution to the Kahler potential

fTGH1,2
H̄1,2H1,2 (25)
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with rescaling of H1,2:

H1,2 =
1

√

fTGH1,2

H ′
1,2 (26)

Before making the transformation of Eq. (23), The Yukawa contribution to the superpo-

tential is [20]

WY = e
1

2
Km

1

3
YIJKC

ICJCK (27)

where Km = ln(S + S̄) +KT is the moduli contribution to the Kahler potential. From Eqs.

(13) and (18), one has

Km = −ln(2V )− ln(8R3). (28)

Written in terms of SM fields WY then is

WY =
1

4R3/2V 1/2
(Y (u)qLH2uR + Y (d)qLH1dR + Y (e)lLH1eR). (29)

and after the transformation to the canonical matter fields one has

WY = u′Lλ
(u)u′RH

′
2 + d′Lλ

(d)d′RH
′
1 + e′Lλ

(e)e′RH
′
1. (30)

where λ(u,d,e) are give by 2

λ
(u)
IJ =

1

8
√
2

1

R3V 1/2

1
√

GH2

(S(q)Ũ (q)Y (u)U (u)S(u))IJ (31)

λ
(d)
IJ =

1

8
√
2

1

R3V 1/2

1
√

GH1

(S(q)Ũ (q)Y (d)U (d)S(d))IJ (32)

λ
(e)
IJ =

1

8
√
2

1

R3V 1/2

1
√

GH1

(S(l)Ũ (l)Y (e)U (e)S(e))IJ (33)

We use here the notation “∼” for transpose. In Eq. (30), λ(u,d,e) play the role of the Yukawa

matrices at the GUT scale in the phenomenological analyses such as in [2]. However, in

general they are not symmetric matrices and so M-Theory textures are uniquely different

from what has previously been considered in phenomenological analyses. In brief, it is

the smallness of the third generation eigenvalues of the Kahler matrices appearing in the

denominators of Eq.(31-33) (from the factor S of Eq.(24)) that give rise to the large third

generation masses.

2 We correct an error in [28], the omission of the V − 1

3 factor in Eq.(13) (see e.g. [38]), which leads to a

factor 1/V − 1

2 in Eq.(31-33) rather then 1/V .
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Table 2. Kahler matrices Z
(u,d,l,e)
IJ and Yukawa matrices Y (u,d,e) for tan β=40.

Zu = fT













1 0.3452 0

0.3452 0.1311 0.006365

0 0.006365 0.00344













; Zd = fT













1 0.496 0

0.496 0.564 0.435

0 0.435 0.729













;

Z l = fT













1 −0.547 0

−0.547 0.432 0.025

0 0.025 0.09













; Ze = fT













1 0.624 0

0.624 0.397 0.00574

0 0.00574 0.004407













.

diagY (u) = (0.0114, 0.0597, 0.104 exp[0.65πi]);

diagY (d) = (2.052, 0.2565, 1.8297);

diagY (e) = (0.307, 3.789, 1.821).

In [28] we saw for the case of tan β = 3 how the above Yukawa matrices gave rise to

the experimental quark masses and CKM matrix elements at the electroweak scale, and we

showed there analytically how the hierarchies arose naturally without undue fine tuning.

We now update this analysis for the case of tanβ = 40, and extend the discussion to include

the lepton sector. Table 2 shows a choice of Kahler metric and Yukawa matrices that satisfy

all the current experimental data. The ZF
23, Z

F
32 and ZF

33 entries for F = u, l, e are O(d2)

(for d = 0.1) as required by Eq.(22). For simplicity we have assumed that the q and u

quarks have identical Kahler matrices and have the maximum number of zero entries, and

that the Yukawa matrices are diagonal. One phase is assumed in the Yukawa matrices to

account for CP violation. To compare with low energy data, we use one loop Yukawa RGEs

and two loop gauge RGEs to evaluate the Yukawa couplings at the electroweak scale, which

we take to be mt. Below mt we assume that the Standard Model holds and include in

our calculations the QCD corrections (which are quite significant). The QCD correction

factors used were ηc = 2, ηu = 2.5 = ηd, ηb = 1.6 and ηs = 2.5. Diagonalization of the

low energy Yukawa matrices then allows one to generate the low energy quark and lepton

masses and the CKM matrix elements. The results are shown in Table 3, and are in good

agreement with experiment. Of course in a fundamental analysis, the precise entries in
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Table 3. Quarks and leptons masses and CKM matrix elements obtained from the model of Table

2. Masses are in GeV. Experimental values for lepton and quark masses are from [32] and CKM

entries from [39] unless otherwise noted.

Quantity Theoretical Value Experimental Value

mt(pole) 175.2 174.3 ± 5.1

mc(mc) 1.27 1.0-1.4

mu(1 GeV) 0.00326 0.002-0.006

mb(mb) 4.21 4.0-4.5

ms(1 GeV) 0.086 0.108-0.209

md(1 GeV) 0.00627 0.006-0.012

mτ 1.78 1.777

mµ 0.1054 0.1056

me 0.000512 0.000511

|Vus| 0.221 0.2210 ± 0.0023

|Vcb| 0.042 0.0415±0.0011

|Vub| 4.96 × 10−3 3.80+0.24
−0.13 ± 0.45 × 10−3

|Vtd| 6× 10−3 9.2 ± 1.4 ± 0.5× 10−3

sin 2β 0.803 0.731 ± 0.056 [40]

Table 2 arise from integrals over the Calabi-Yau space, an analysis that cannot at this stage

be performed. However, our discussion has shown that the general structure of the Kahler

metric and Yukawa couplings arising in our Horava-Witten model can lead to low energy

quark and lepton spectra consistent with all current experiments without the fine tuning

used in phenomenological analyses.

Without knowledge of the value of the factors R3V 1/2
√

GH1,2
in the denominators of

Eq.(31-33), Kahler textures can only determine the mass ratios. As in [28], we use the top

Yukawa at the GUT scale to determine the value of this common factor. If we write V = r6,

where r is the mean radius of the Calabi-Yau manifold divided by the co-ordinate radius,
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then for GH1,2
= 1, one finds that

R× r = 6.82. (34)

In the next section, we will show that R and r can be determined separately if massive

neutrinos enter our model via the mechanism proposed there.

IV. NEUTRINO MASSES AND OSCILLATIONS

In the last section we presented a way to generate the Yukawa textures in the quark and

lepton sectors whose structures are the same as the SM. The consequence of the masslessness

of neutrinos in the SM is that the mass eigenstates of leptons are identical to their gauge or

flavor eigenstates and, unlike the quark sector which has a CKM mixing matrix, the lepton

sector does not. Therefore, there is no oscillations between neutrinos in the SM. However,

the neutrino experiments of Super-Kamiokande [41, 42], SNO [43] and KamLAND [44]

have shown the existence of neutrino oscillations which indicates that neutrinos are actually

massive particles. In this section we will show that massive neutrinos can be included in

our model and their masses and mixings can be fitted into the large mixing angle (LMA)

solution. (For a recent review of neutrino oscillations see [45].)

The simplest way to include massive neutrinos to our model is to associate a right-handed

neutrino to every left-handed neutrino and insert by hand a term proportional to

Y (ν)lLH2νR (35)

into superpotential (29). However, the Yukawa couplings in the neutrino sector have to

be extremely small and thus this solution is theoretically less interesting unless there is a

mechanism behind it. The most widely used way to overcome this problem is the seesaw

mechanism [29]. In seesaw models, besides the usual Dirac mass terms (which are ap-

proximately the same size as other fermion masses), one introduces additional very large

Majorana masses which enter in the off-diagonal entries of the neutrino mass matrix. As a

consequence, some eigenvalues are suppressed to the desired values when the diagonalization

of neutrino mass matrix takes place. The physical neutrinos in seesaw models are then of

Majorana type while other leptons and quarks are Dirac fermions. Here we propose a new

way to generate neutrino masses. In our model, neutrinos are of Dirac type and thus the

similarity between leptons and quarks is preserved and no neutrinoless double beta decay

13



exists. We will see that our new mechanism provides a reasonable physical explanation to

the origin of term (35).

The Kahler potential in principle can have gravitationally coupled trilinear terms which

are usually ignored as they generally are of negligible size. However, we assume here that

our Kahler potential at the GUT scale contains the holomorphic cubic termK(3) = Kν+Kν
†

where

Kν = κ11Y
(ν)lLH2νR (36)

where 1/κ11 is the 11 dimensional Planck mass (i.e. 1/κ11 ≃MG) and Y
ν is a Yukawa matrix.

We note that Eq.(36) is the only gauge invariant holomorphic cubic lepton term involving νR

and that κ11 is the natural scale for Horava-Witten theory. We assume here that the Yukawa

contribution to the superpotential is still given by (30), and that no additional neutrino

masses arise there. One can transfer Kν from the Kahler potential to the superpotential by

a Kahler transformation (1/κ4 is the 4D Planck mass):

K → K −K(3),

W → eκ
2

4
KνW =W + κ 2

4KνW + · · · (37)

Now when supersymmetry breaks, the superpotential W will grow a VEV of size:

〈W 〉 ∼= 1

κ 2
4

MS (38)

whereMS is of electroweak size. Consequently, after supersymmetry breaking, an additional

term appears in superpotential (30):

MS

MG
Y (ν)lLH2νR. (39)

In the above we have assumed that no additional neutrino masses arise in the superpo-

tential. One might imagine that this could come about if there exists a global symmetry or

a non-gauge discrete symmetry that νR obeys. (Examples might be if νR was a member or a

global SU(2)R doublet or were charged under a global U(1) symmetry; or if νR appeared in

W only as an even power one could assign it a discrete quantum number −1.) Then in the

cubic part of the superpotential, the global or discrete symmetry (plus SU(2)L symmetry)

would forbid Majorana or Dirac masses formed from νL,R. Since gravity is expected to break

such global or discrete symmetries in string theories, quartic terms scaled by κ11 could arise
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(which is in fact why the contribution of Eq. (36) would be allowed in the Kahler potential

in this scenario.) Such terms would have the general form (H2l)
2 and H1H2ν

2
R, giving rise

to Majorana masses. Using the parameters of Table 2 and Eq. (43) below, we estimate that

the first term gives rise to neutrino masses a factor of ∼ 100 smaller than Eq. (36), and

the second term is a factor of 1/ tanβ smaller yet. Thus they would produce only small

corrections in our model. We have not investigated in detail if one could dispense with

Eq. (36) completely and try to get the correct neutrino masses using only the above super-

potential terms, but because of the above result, we believe it to be unlikely. We note also,

that the above superpotential terms could also occur in the standard see-saw model, but

are neglected there. While global and discrete symmetries can indeed arise from Calabi-Yau

manifolds in Horava-Witted M-theory, whether or not the necessary symmetries are present

in physically interesting Calabi-Yau manifolds is not known. Thus we have postulated their

existence in this paper.3

We can now proceed as in Sec. 2. First diagonalize and rescale the Kahler matrices ZIJ

of νR and other fields to the unit matrix. Then make the necessary transformations in the

superpotential to the canonical normalized fields. The term giving rise to neutrino masses

can then be written as

ν ′Lλ
(ν)ν ′RH

′
2 (40)

where

λ
(ν)
IJ =

1√
2

1

R3/2

1
√

GH2

MS

MG
(S(l)Ũ (l)Y (ν)U (ν)S(ν))IJ (41)

Note that the overall coefficient in (41) is different from the one in (31-33) because the

neutrino term originates from the Kahler potential, not the superpotential (27) which has

the additional coefficient e
1

2
Km. It is thus possible to use the experimental neutrino mass

square differences to determine R. In the example given below, we find that R = 2.13

produces acceptable neutrino masses (we assume MS = 1 TeV in our calculation), and from

Eq.(34), one finds that r = 3.20. At the weak scale, after the diagonalization of charged

lepton and neutrino Yukawa matrices, the Maki-Nakagawa-Sakata (MNS) lepton mixing

matrix arises. We follow the standard parameterization [32] (the phase similar to the one

3 We thank the Referee for bring this point to our attention.
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in the CKM matrix is ignored):

VMNS =











c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13











. (42)

where cij = cos θij , sij = sin θij and i, j = 1, 2, 3.

The following is an example at tan β = 40. We use the lepton entries of Table 2, and the

following neutrino Kahler and Yukawa matrices at MG:

Zν = fT











1 −0.465 0

−0.465 0.3105 0.0254

0 0.0254 0.027











; (43)

diagY (ν) = (4, 0.4, 4). (44)

The neutrino mass square differences and mixing angles at the weak scale are then calculated

to be:

∆m2
21 = 5.5× 10(−5) eV2; (45)

∆m2
32 = 2.7× 10(−3) eV2; (46)

tan2 θ12 = 0.42; tan2 θ23 = 0.93. (47)

with |Ue3| = 0.005. Since our model is a complete model of neutrino masses, we can calculate

all the masses themselves and not just the mass square differences. For the above example

we find

m1 = 6.5× 10−4 eV; m2 = 7.4× 10−3 eV; m3 = 5.2× 10−2 eV (48)

consistent with cosmological constraints on neutrino masses [47].

The analysis of solar and KamLAND data in terms of two neutrino oscillations gives for

the LMA solution [42]:

0.20 ≤ tan2 θS ≤ 0.68 ; 5.6× 10−5 ≤ ∆m2
S/eV

2 ≤ 8.9× 10−5 (49)
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where ∆m2
S is the solar neutrino mass square difference and θS is the corresponding mixing

angle and the ranges in Eq.(49) (and Eq.(50) below) are 3σ around the central value. The

analysis of Super-Kamiokande and K2K data shows for the LMA solution [48]:

0.85 ≤ sin2 2θA ≤ 1 ; 1.4× 10−3 ≤ ∆m2
A/eV

2 ≤ 3.8× 10−3 (50)

where ∆m2
A and θA are the relevant mass square difference and mixing angle for the atmo-

spheric neutrino oscillation.

Since in our case |Ue3| ∼= 0, solar and atmospheric neutrino oscillations decouple [31, 49].

Therefore the two neutrino oscillation analysis can be applied to our case with the effective

mixing angles given by:

θS = θ12 , θA = θ23. (51)

Eq.(45)-(47), (49) and (50) show that our results agree with the current LMA solution quite

well.

V. µ → e+ γ DECAY

Lepton flavor violation (LFV) processes in supersymmetric models have been discussed

in much detail in the literature (e.g. [50, 51, 52, 53, 54]). In our model the MNS matrix

by itself can give rise to LFV processes, but this contribution is still very small, e.g. for

µ→ e+ γ, the decay rate is of O((mν/mW )4) [55, 56, 57, 58]. Therefore, In this section, we

mainly discuss the additional supersymmetric contributions to the LFV process µ→ e+ γ.

The operator for µ→ e+ γ is:

Lµ→e+γ =
ie

2mµ
e σµνqν (alPL + arPR)µ · Aµ + h.c. (52)

where PL,R ≡ (1∓γ5)/2 and σµν ≡ i
2
[γµ, γν ]. The decay width for µ → e+γ can be written

as:

Γ(µ→ e + γ) =
mµe

2

64π

(

|al|2 + |ar|2
)

(53)

Then the branching ratio is given by:

Br(µ → e+ γ) ∼= Γ(µ → e+ γ)

Γ(µ → eν̄eνµ)

=
3π2e2

G2
Fm

4
µ

(

|al|2 + |ar|2
)

(54)
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FIG. 1: Feynman diagrams for the neutralino and chargino contributions to µ → e+ γ.

The supersymmetric contributions include the neutralino and chargino diagrams shown

in FIG.1. The neutralino diagram gives:

aNl =
4
∑

i=1

6
∑

k=1

m2
µ

8π2m2
l̃k

(

Nki
1L

∗
Nki

2LF1(x
N
ik) +

mχ̃0

i

mµ

Nki
1L

∗
Nki

2RF2(x
N
ik)

)

(55)

aNr =
4
∑

i=1

6
∑

k=1

m2
µ

8π2m2
l̃k

(

Nki
1R

∗
Nki

2RF1(x
N
ik) +

mχ̃0

i

mµ

Nki
1R

∗
Nki

2LF2(x
N
ik)

)

(56)

where xNik = m2
χ̃0

i

/m2
l̃k
and

F1(x) =
2x3 + 3x2 − 6x+ 1− 6x ln x

12(x− 1)4

F2(x) =
x2 − 1− 2x ln x

2(x− 1)3

Nki
lL =

√
2g1Xi1D

∗
l+3,k +Xi3D

∗
lkY

e(D)
l

Nki
lR = − 1√

2
(g1Xi1 + g2Xi2)D

∗
lk +Xi3D

∗
l+3,kY

e(D)
l (57)

where g1 and g2 are the U(1) and SU(2) gauge coupling constants, X is the matrix diagonal-

izing the 4× 4 neutralino mass matrix Mχ̃0 according to Mχ̃0X = X∗M (D)

χ̃0 , D diagonalizes

the 6 × 6 charged slepton mass matrix M2
l̃
according to M2

l̃
D = DM

2(D)

l̃
and Y e(D) is the

diagonalized Yukawa matrix of charged leptons (We use the notation of [59]).

Similarly, the chargino diagram gives

aCl = −
2
∑

i=1

6
∑

k=1

3
∑

m=1

m2
µ

8π2m2
ν̃k

(

Cki
1L

∗
Cki

2LF3(x
C
ik) +

mχ̃±

i

mµ
Cki

1L

∗
Cki

2RF4(x
C
ik)

)

(58)

aCr = −
2
∑

i=1

6
∑

k=1

3
∑

m=1

m2
µ

8π2m2
ν̃k

(

Cki
1R

∗
Cki

2RF3(x
C
ik) +

mχ̃±

i

mµ
Cki

1R

∗
Cki

2LF4(x
C
ik)

)

(59)
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where xCik = m2
χ̃±

i

/m2
ν̃k

and

F3(x) =
x3 − 6x2 + 3x+ 2 + 6x ln x

12(x− 1)4

F4(x) =
x2 − 4x+ 3 + 2 ln x

2(x− 1)3

Cki
lL = −g2Vi1P ∗

mk(VMNS)
∗
lm + Vi2P

∗
m+3,kY

ν(D)
m (VMNS)

∗
lm

Cki
lR = U∗

i2P
∗
mk(VMNS)

∗
lmY

e(D)
l (60)

where VMNS is the MNS mixing matrix, P is the matrix diagonalizing the 6 × 6 sneutrino

mass matrix M2
ν̃ according to M2

ν̃P = PM
2(D)
ν̃ , U and V diagonalize the chargino mass

matrix Mχ̃± according to U∗Mχ̃±V † = M
(D)
χ̃± and Y ν(D) is the diagonalized Yukawa matrix

of neutrinos.

To evaluate the branching ratio of µ → e + γ, we first generate Yukawa textures in the

way described in Sec. 3 with phenomenological inputs including the fermion masses and

neutrino oscillations described in Sec. 4. Then we choose soft breaking parameters at the

GUT scale and run the RGEs to the weak scale. Finally one can use the formula given

above to calculate the µ → e + γ branching ratio. We display our results in the following

three figures for tanβ = 10, 30 and 40.
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FIG. 2: Branching ratio of µ → e+ γ for tan β = 10

Although our Yukawa textures are constructed through the Kahler potential, the usual

mSUGRA structure holds at the GUT scale. In addition, to constrain the parameter space,
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FIG. 3: Branching ratio of µ → e+ γ for tan β = 30
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FIG. 4: Branching ratio of µ → e+ γ for tan β = 40

we implement the relic density constraint [47]: 0.095 ≤ Ωχ0

1
h2 ≤ 0.129. For a given m1/2, an

allowed narrow region of m0 is determined by the relic density constraint [59, 60]. Since the

µ→ e+ γ branching ratio is not sensitive to the value of m0 we only show the result for one

value of m0 in the allowed region for any given m1/2. There are other experimental bounds

on the parameter space, e.g. the b→ s+γ decay, the light Higgs mass, the muon g−2, all of

which can easily be implemented. Since m0 is significantly constrained by the relic density
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bounds for any given m1/2, other experimental constraints are only needed for constraining

m1/2. For example, at tan β = 40, the b → s+ γ branching ratio produces a lower bound of

≃ 400 GeV on m1/2 while a muon g−2 deviation from the SM can produce an upper bound

on m1/2. For the purpose of showing what µ→ e+ γ branching ratio can be reached in our

model, except for the relic density constraint, we ignore the other experimental bounds in

our plots since they are not significant for this purpose.

In our plots the y-axis is the logarithmic ratio of our theoretical predictions to the current

experimental bound [32]. Therefore, only the region below zero is experimentally allowed.

One can see that at large tanβ, especially for tan β = 40, the theory predictions are only

about one order of magnitude smaller than the experimental bound and hence accessible to

future experiments [33, 34] while part of the parameter space for lower tan β will also be

accessible.

VI. CONCLUSION

In this paper we have extended a model of the quark mass hierarchy based on the

Horava-Witten M-Theory [28] to include charged leptons and massive neutrinos. The model

is based on the assumptions that five branes exists in the bulk lying near the distant orbifold

plane (i. e. about 90% of the way from the physical plane), and that the instanton charges

on the physical plane vanish. We had previously seen that this gave rise to a three gener-

ation model with the Standard Model gauge group at the GUT scale. While one cannot

calculate Yukawa couplings in M-Theory (they involve integrals over the Calabi-Yau space)

these constraints were sufficient to qualitatively account for the quark mass hierarchy at the

electroweak scale without undue fine tuning. The mechanism that achieved this was that the

five brane contribution to the Kahler potential gave rise to small Kahler matrix eigenvalues,

and the quark masses were proportional to the reciprocal square root of the eigenvalues

when the kinetic energy was put into canonical form. We saw that the same mechanism

also gave rise qualitatively to the hierarchy of charged lepton masses, again without any

excessive fine tuning.

Neutrino masses can arise in these models if a right handed neutrino exists in the massless

particle spectrum. Then one can assume that the Kahler potential has a cubic holomorphic

contribution of the form of Eq.(36), the interaction being scaled by the 11 dimensional
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Planck mass (the basic parameter of Horava-Witten theory). When transformed to the

superpotential by a Kahler transformation, this term gives rise to neutrino masses of the

correct size after supersymmetry breaking. (Thus the mechanism being used here for the

neutrino masses is similar to the one previously used to generate a µ parameter of electroweak

size [61].) it is possible then to chose natural sized values for the Yukawa and Kahler matrix

entries to generate masses and CKM and MNS mixing angles in agreement with all low

energy data. The neutrinos in this model are Dirac, and so will exclude neutrinoless double

beta decay. However, the mixing in the neutrino sector allows for µ→ e+ γ decay to occur,

and with reasonable values of the SUSY parameters, this decay should become observable

in the next round of µ catalysis experiments [33, 34] over a significant range of parameters.

Aside from the Kahler and Yukawa matrices, the quark, lepton and neutrino properties

depend on the Calabi-Yau volume modulus V which we have parameterized by V 1/6 = r and

the radius modulus R. We have found that all the quark, lepton and neutrino masses can

be fit satisfactorily with r and R of O(1). Thus for the example in text for tanβ = 40 we

found R = 2.13 and r = 3.20. One important feature of this Horava-Witten model that has

not been addressed here is how to stabilize the position of the 5-brane close to the distant

orbifold plane. One possibility may involve quantum corrections, e.g. membrane potentials

between the 5-brane and the orbifold planes [38, 62, 63].
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