-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

Il ‘[I

n

PUBLISHED FOR SISSA BY €} SPRINGER

)

RECEIVED: February 11, 2013
REVISED: April 24, 2013
ACCEPTED: May 16, 2013
PUBLISHED: May 28, 2013

Mb5-branes from gauge theories on the 5-sphere

Hee-Cheol Kim® and Seok Kim’
@School of Physics, Korea Institute for Advanced Study,
Seoul 130-012, Korea

b Department of Physics and Astronomy & Center for Theoretical Physics,
Seoul National University, Seoul 151-7}7, Korea

E-mail: heecheoll@gmail.com, skim@phya.snu.ac.kr

ABSTRACT: We use the 5-sphere partition functions of supersymmetric Yang-Mills theories
to explore the (2,0) superconformal theory on S°x S'. The 5d theories can be regarded
as Scherk-Schwarz reductions of the 6d theory along the circle. In a special limit, the
perturbative partition function takes the form of the Chern-Simons partition function on
S3. With a simple non-perturbative completion, it becomes a 6d index which captures the
degeneracy of a sector of BPS states as well as the index version of the vacuum Casimir
energy. The Casimir energy exhibits the N? scaling at large N. The large N index for
U(N) gauge group also completely agrees with the supergravity index on AdS7 x S*.

KEYWORDS: Supersymmetric gauge theory, Brane Dynamics in Gauge Theories, Field
Theories in Higher Dimensions, M-Theory

ARX1v EPRINT: 1206.6339

@© SISSA 2013 doi:10.1007/JHEP05(2013)144


https://core.ac.uk/display/157677552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:heecheol1@gmail.com
mailto:skim@phya.snu.ac.kr
http://arxiv.org/abs/1206.6339
http://dx.doi.org/10.1007/JHEP05(2013)144

Contents

1 Introduction 1
2 Maximal SYM on the 5-sphere 4
2.1 Motivation from Abelian theories 4
2.2 Non-Abelian theories 10
3 5-sphere partition function as a 6d index 16
3.1 Perturbative partition function and Casimir energies 17
3.2 Nonperturbative corrections and AdS7 gravity duals 23
3.3 Generalizations 29
4 Discussions 30
A Spinors, spherical harmonics and determinants 31
B Indices and Casimir energies in various dimensions 36

1 Introduction

Mb5-brane is one of the most mysterious objects in M-theory [1, 2]. M2- and M5-branes,
which are two important ingredients of M-theory, are known to support strange numbers
of light degrees of freedom on their worldvolumes [3]. Although the N3/2 scalings for N
coincident M2-branes have been recently understood in some detail [4, 5], the N? scalings
for N Mb5-branes are not very solidly understood in a microscopic way.

M-theory is related to 10d string theories by having an extra direction emerging in
strongly coupled string theories [1, 2], being a circle for the type ITA strings. This relation
is mainly supported by identifying DO-brane states with the Kaluza-Klein states of M-
theory along the circle. Such a relation could still hold in Euclidean type ITA /M-theories
on various curved manifolds with a circle factor.

The relation between type IIA/M-theories via a circle compactification also yields a
similar relation between the D4-brane and M5-brane theories. On M5-branes probing flat
transverse space or its Zg orbifold, there live 6d (2,0) superconformal theories associated
with A, or D,, type gauge groups. The full set of known 6d (2, 0) theories actually come in
an ADE classification [6]. The microscopic details of these theories are largely unknown.
Dimensional reductions of these 6d theories along a small circle admit descriptions by
5d maximally supersymmetric Yang-Mills theories. Naively, the resulting 5d theory is
supposed to be a dimensional reduction, after which one expects that information on the
6d physics is lost. There appeared some evidence that careful studies of the strong-coupling



or non-perturbative physics of the 5d theory let us extract the nontrivial information on
the 6d theory compactified on the circle [7-10]. In Minkowskian dynamics, crucial roles
are played by the instanton solitons in the 5d theory, similar to the way in which type ITA
DO-branes are crucial for reconstructing the KK states of the extra circle. In particular, in
BPS sectors, it has been shown in detail that the instanton partition function yields various
(expected or novel) results for 6d (2, 0) theory compactified on a circle [11]: this includes the
rigorous proof of the uniqueness of U(1) multi-instanton bound states, discovery of novel
self-dual string bound states which explains some enhancements of degrees of freedom in
the Coulomb branch, the study of the symmetric phase instanton index and its agreement
with the DLCQ gravity dual index on AdS; x S*.

In this paper, we apply the same idea to the 6d theory on S° x S!, and study them
from 5d gauge theories on S°. As the 5d gauge theories (at least apparently) look non-
renormalizable, there is a general issue on how to make quantum calculations sensible.
There appeared proposals on possible finiteness of maximally supersymmetric theories in
5d [9, 10]. (See also [12] for an earlier work.) But even if this is true, having a good control
over all the 5d quantum fluctuations would be generally difficult. Just as those considered
n [11], there are many supersymmetric observables which rely less sensitively on quantum
fluctuations. We expect that the BPS observables that we consider in this paper would also
be safe: in fact, based on localization, we are led to consider a supersymmetric path integral
which is secretly Gaussian, for which the UV divergence issue is almost trivial. So we base
our studies on a much more modest but solidly testable proposal that 5d supersymmetric
Yang-Mills theory describes 6d (2,0) theory compactified on a circle at least in the BPS
sector. Note that this proposal is not necessarily restricted to maximal SYM: although
we focus on maximal SYM in this paper, we generalize the study to less supersymmetric
theories in a follow up work [13].

The (2,0) theory on S® x S is interesting for various reasons. Firstly, any 6d CFT on
flat spacetime can be put on S x R by radial quantization, where R is the (Euclidean) time
direction. Depending on how one compactifies the time direction to a circle, the resulting
partition function will be an appropriate index which counts BPS states of this theory. In
particular, S° x R is the conformal boundary of global AdS7, so that the large N limits (if
available) of these theories could have gravity duals on global AdS7 [14-16]. AdS7/CFTg
is perhaps the least understood duality among various AdS/CFT proposals, on which we
can shed lights with our studies.

When the circle size is small, we are naturally led to study the Euclidean supersym-
metric Yang-Mills theory on the 5-sphere. For the ADFE cases, we study the 5d gauge
theories with corresponding gauge groups. For A, and D,, cases, they can be understood
intuitively as living on ‘Euclidean D4-branes’ wrapping the 5-sphere, if one reduces the 6d
theory on the circle interpreted as the M-theory circle.

We first construct and calculate the partition function of a Yang-Mills quantum field
theory on S° preserving 16 real SUSY. To motivate the construction from the 6d (2,0)
theory, we first consider the Abelian 6d (2,0) theory. As this free theory on R is conformal,
one can radially quantize it to obtain a theory on S° x R. The 32 Killing spinors satisfy



one of the two Killing spinor equations:
1
Ve = :tz—FMFTe, (1.1)
r

where 7 is the radius of S° and 7 is the Euclidean time. Since the dependence of € on 7
is ei%T, one cannot naively compactify this theory preserving all 32 SUSY. Instead, one
can introduce an R-symmetry twist (or a Scherk-Schwarz reduction) to obtain a theory
on S° x S! with as much as 16 SUSY. This can be done by picking an SO(2) C SO(5)
R-symmetry. The resulting theory after the 5d reduction, with tensor-vector dualization,
can be straightforwardly generalized to non-Abelian theories with arbitrary gauge group.
Due to the R-symmetry twist, the maximal SYM on S® preserves only SO(2) x SO(3) part
of SO(5) R-symmetry.

We calculate and study the partition function of this maximal SYM on S°. We employ
the localization technique to obtain the perturbative contribution given by a simple matrix
integral. We also suggest a simple non-perturbative correction, which is proved in a follow-
up paper [13]. The M-theory interpretation demands us to relate the 5d gauge coupling

gy m and the circle radius r as
472 1 2w

gty B (12
where [ is the (dimensionless) inverse ‘temperature’ like chemical potential. In flat
Minkowskian space, this is relating the instanton (or DO-brane) mass with the Kaluza-
Klein mass on the extra circle. With this interpretation, and also with the R-symmetry
twist on which we elaborate in section 2, the 5-sphere partition function is identified as
an index of the 6d theory with the chemical potential 8. This index counts BPS states on
S5 x R, or local BPS operators on RS. The fact that our 5d partition function takes the
form of an index, with all coefficients being integers when expanded in the fugacity e #,
strongly supports that the 5d Yang-Mills theory is nontrivially capturing the 6d physics.

In the later part of this paper, we mostly consider the U(V) gauge theory in 5d, to study
the An_; type (2,0) theory in 6d times a decoupled free sector. However, we comment on
some important general features for all ADE gauge groups, and also on possible fate of
the theories with non-ADFE gauge groups, including BCFG.

Our partition function captures two different features of the 6d theory. Firstly, it tells
us the degeneracy information of the BPS states of the 6d theory. Secondly, and perhaps
more interestingly, it contains the information on the 6d vacuum on S° x R. The unique
vacuum of the radially quantized 6d theory has nonzero Casimir energy. In the large N
limit of the SU(N) and SO(2N) cases, the AdS; gravity dual predicts its value to be
nonzero and proportional to N3 [17]. From the gravity side, this is basically the same
N3 appearing in all AdS; gravity calculations, coming from é—i combination of the AdS7
radius ¢ and 7d Newton constant G7. Our partition function captures the ‘index version’
of the vacuum Casimir energy, which also exhibits the N3 scaling in the large N limit. See
section 3 and appendix B for what we mean by the ‘index Casimir energy.” The difference
between the normal Casimir energy of CFT and ours is that ours uses an unconventional
regularization for the Casimir energy, which is naturally chosen by the definition of the
index we consider.



Curiously, the perturbative partition functions of our theories with 16 SUSY on S®
turn out to take identical forms as the partition functions of pure Chern-Simons theories
on S3, when we appropriately identify the Chern-Simons coupling constant with the 5d
coupling constant.

Upon adding a simple non-perturbative correction to the above perturbative part, we
also show that the U(NN) index completely agrees with the supergravity index on AdS7 x S4
in the large N limit. Also, our finite IV index is a function which appears in various different
physical/mathematical contexts. See section 3.2 for the details.

We also provide a matrix integral form of the perturbative part of a generalized parti-
tion function, which we suppose to be a more refined 6d index with two chemical potentials.
For this we study a SYM theory on S® preserving 8 SUSY, which can be regarded as a
Scherk-Schwarz reduction of the 6d (2,0) theory with more general U(1) C SO(5) embed-
ding. In one limit, we suggest that the generalized partition function captures the spectrum
of half-BPS states of the 6d theory, whose general structures are explored, for instance,
in [18].

The remaining part of this paper is organized as follows. In section 2, we motivate
our theory on S° by taking a Scherk-Schwarz reduction of the Abelian 6d (2,0) theory.
The resulting 5d theory is generalized to a non-Abelian theory on S°. In section 3, we
calculate the perturbative partition function and show that it takes the same form as the
Chern-Simons partition function on S3. Adding non-perturbative corrections, we study
the index Casimir energy, the large N index and the dual gravity index. We finally present
a matrix integral form of a generalized partition function which we expect to be a more
refined 6d index. Appendix A explains the scalar/spinor/vector spherical harmonics on S°,
as well as some path integral calculations. Appendix B explains that the superconformal
indices (of which our partition function is a special sort) in various dimensions capture the
index version of Casimir energies and study their properties.

As we were finalizing the preparation of this manuscript, we received [19] which partly

overlaps with our section 3.3. Their result is a special case of ours in section 3.3 with

A=L

2 Maximal SYM on the 5-sphere

2.1 Motivation from Abelian theories

As a motivation, we would like to reduce the radially quantized Abelian (2,0) theory on a
circle to obtain a theory on S° with 16 SUSY. The resulting 5d theory will be generalized
to non-Abelian theories in section 2.2.

The 32 Killing spinors on Minkowskian S x R satisfy one of the two equations

Vares = iQLPMFOei, (2.1)
T

where M = 0,1,2,3,4,5, and r is the radius of S°. Taking M = 0, one finds the time
dependence ,
ex(r) = eFarleps . (2.2)



The spinors with two signs yield Poincare/conformal supercharges, respectively, which
should be suitably complex conjugate to each other.

We first consider the properties of our spinors in some detail. The matter and Killing
spinors of the 6d (2,0) theory are all spinors in spacetime SO(5,1) (or SO(6) in Euclidean
theories) and the SO(5)z R-symmetry. The 8 x 8 gamma matrices in 6d can be written in
terms of the 4 x 4 5d gamma matrices 7, (which shall be useful after a circle reduction) as

Fu:’yu(@al, I''=1,® 09 (23)

on a Euclidean space. Multiplication of factor 7 to I'; will convert it to the Lorentzian
gamma matrices. The 6d chirality matrix I''?3456 = i3 demands that a chiral spinor have
o3 = +1 eigenvalue. To be concrete, we take the following representation of the 5d gamma

matrices in this paper (0?3 are Pauli matrices):
23 G123 g0l A 1,002, AP = —1a®00 (2.4)
These satisfy 12345 = 1. Also, for the internal SO(5) spinors, we introduce the 4 x 4

gamma matrices 47 (I = 1,2,3,4,5) as

’3’120’1®O—17 ;5/2:0_2®0,1’ ,}4203@017 ,3/5:12(80_27 ,3/3:,3/1245:_12®0_3, (25)

which satisfy 41234 = 1.

With the above convention for gamma matrices, one finds (in the Lorentzian case)
(Par)” = (1, =T, T3, — T4, T'5, —Tg) = £C: T3 C1" (2.6)

with Cp ~ T35 ~ 724 ® ol =C®c! and C_ ~ Ty ~ Yoy ®og = C® o%. Here, C
is the charge conjugation matrix in 5d in our convention. Killing spinors e are related
by a symplectic charge conjugation, using either of C'y together with the SO(5)r ~ Sp(4)
internal charge conjugation C ~ 4% = io? ® 03. Namely, the Killing spinors satisfy
el = €+C®C’ . With the appearance of I'V in €, = eLFO, the symplectic charge conjugation
with Lorentzian signature does not flip the 6d chirality. Also, it is easy to see that the
equations (2.1) for ey correctly transform into each other by the above conjugation. So ey
can both be taken to be in the 4 representation of SO(6), yielding 6d (2,0) SUSY.

On the other hand, in Euclidean 6d, one finds
(Twm)* = (T1,—T9,T'5,—Ty,T'5, —T) = O T Cy* (2.7)

with same C'y as in the Lorentzian case. So one may be tempted to relate e1 by a similar
symplectic Majorana condition e_ Lo ® éei This time, the charge conjugation flips the
6d chirality. Also, changing I'g on the right hand side of (2.1) to make it into I'¢ along
7 direction, e equations are no longer related to each other with the above conjugation.
A natural charge conjugation in the radially quantized Euclidean CFT is to accompany
it with the sign flip of 7 [18], as this is changing particles into anti-particles. (This is
basically remembering the Lorentzian physics via 7 = it.) Also, we multiply I's on the
charge conjugation matrix to have all matter and Killing spinors to have same chirality.



Combining the charge conjugation with 7 — —7 and a multiplication of I'g, one finds that
the Euclidean version of (2.1) for e are related to each other. Thus, we have 32 real Killing
spinors in both Lorentzian and Euclidean 6d theories, all being chiral.

Now we consider the Euclidean theory with time 7. Since all Killing spinors depend on
7, naive compactification on S° x S* breaks all SUSY. To preserve 16 SUSY, one suitably
twists the theory with an SO(2) C SO(5) chemical potential to admit constant spinors on
St. Namely, taking a 5 — (3,1) + (1,2) decomposition of an SO(5) D SO(3) x SO(2)
vector, one takes the SO(2) which rotates 2 and introduces the background gauge field
which covariantizes

Z‘A45
T T a_ . 2.
Ve Vet ood (2.8)

This will correspond to introducing a chemical potential for the SO(2) R-charge of the 6d
theory, which we shall explain in detail shortly. The M = 6 components of the Killing
spinor equation then becomes

1
Drer = o (£1—i4%) ex . (2.9)

So in the case with + sign, we take the Killing spinors with i4%° = 41 eigenvalue to obtain
16 SUSY. The resulting 5d Killing spinors satisfy

1 ) 45
v;LG:I: = :Fﬂrurrfj: = _ZFMFT’Y €+ . (210)

The 5d Killing spinor equation is thus given by (using o3ey = e4)

L a5
V€= 5, WV (2.11)

which includes both e cases. This is the same as one of the Killing spinor equations studied
in [20] in 5d (although [20] discussed Minkowskian Einstein manifold). In the reduced 5d
perspective, we simply take the charge conjugation e = C' ® C'e*+ without knowing about
7 flip. We also forget the I's = 1 ® oo multiplication by regarding e+ as 4 component
spinors in 5d. 4% transforms under this 5d charge conjugation as

CHiA®)C = — (3" . (2.12)

SoC'® C’eﬁr has the opposite sign in its 4%° eigenvalue to e, making it possible to identify
it as e_. To conclude, the spinors € satisfying (2.11) can be regarded as forming a set of
8 Poincare SUSY Q and 8 conformal SUSY S in 6d perspective, which closes into itself
under Hermitian conjugation. These 8 complex or 16 real Killing spinors will be the SUSY
of our 5d SYM.

As a more general twisting, one can choose different SO(2) embeddings in SO(5),
which generically result in a 5d theory with 8 preserved SUSY upon circle reduction. One
introduces the twisting which covariantizes

V, > V.4 2% (A% + (1— A)3'2) (2.13)



on spinors, where A is a real constant. By following the discussions of the last paragraph,
one finds that the reduced 5d theory preserves 8 SUSY, which satisfies i4%° = i41? = +1
projection for ey, respectively.

Now let us capture some key aspects of the 5d Abelian gauge theory obtained by
reducing the 6d free tensor theory on the circle, with the above R-symmetry twist. In
the r — oo limit, we simply get the maximal SYM in 5 dimension. The coupling to the
background curvature yields various mass terms in the Abelian theory. From the viewpoint
of the 6d theory on S° x S!, the mass terms come from two sources. Firstly, when one
radially quantizes the 6d theory, all 5 real scalars acquire the conformal mass terms with
mass m = %, since the free scalars have dimension 2. This yields the 6d mass terms

26+ S (214)

with a = 1,2,3, 7 = 4,5, in the convention that the kinetic terms are %(8(75“)2 + %(&bi)z.
In 5d, extra contributions to the mass terms are induced from the kinetic term with 7
derivatives, since we now have the SO(2) twists. There is no extra contribution for ¢¢, but
the 7 derivatives on ¢’ and the fermions \ are twisted as

Ve = Vo' — 2y

o iA45
VoA = (vT ol >>\. (2.15)

respectively. The 6d kinetic terms thus provide extra contribution to the 5d masses

1 , 1 2 2, 2 3 . i

S(V20')? 4+ SAVA+ 5077 + 5(¢) = 5(69° + 55(¢')° — —AT4PA . (216

SV 4 DNV A+ S0 + S0 = 567 + 56 — £XAPA . (2.16)
Adding the last scalar and fermion mass terms to be maximal SYM action (with obvious
covariantization with the 5-sphere metric), one is supposed to obtain an Abelian action
which preserves 16 SUSY. We shall explicitly show that the theory preserves 16 SUSY
with above masses in section 2.2, with a non-Abelian completion.

The case with general SO(2) embedding can be studied as well. The resulting scalar
and fermion mass terms are given by

4—(1-A)? 4 — NA?
2r2 2r2
We shall come back to this version of non-Abelian theory with 8 SUSY later.
Before proceeding, we illustrate the nature of the 6d partition functions that we expect

(¢")* +

602 - oA @9+ A2 @)

our 5d calculations to capture, with the example of 6d Abelian (2,0) theory on S° x R.
Up to global rotations and charge conjugation, the BPS bound given by a chosen pair of
Q@ and S via {Q, S} in 6d is given by

¢ > 2(Ry + Ra) + j1 + j2 + ja, (2.18)

where Rp is the SO(2) R-symmetry we used to twist the time derivative. Rg is another
Cartan of SO(5) in the orthogonal 2-plane basis, and ji, j2,j3 are three SO(6) Cartans,



again in the three orthogonal 2-plane basis. The twist above with 8 SUSY uses AR;+(1 —
A)Ry. There is one Poincare supercharge @) saturating the above energy bound, which has
R = Ry = %, J1=7Jo =7J3 = —%, €= % The index which counts BPS states saturating
this bound is studied in [21, 22]. It is defined as

Tr (71)Fe—ﬁ/{Q,S}$3E+j1+j2+j3yR1—Rzaﬁ pi2 073} (2‘19)

with a constraint abc = 1. ' is the usual regulator in the Witten index. For the U(1)
(2,0) theory, the full index Z is given by the Plethystic (or multi-particle) exponential of
the letter index z [22]

6 -1 8 12 &
_a%y ™) —otabtbetea) +at? Z_weoexplz @™ g a B )
n=1

B (1 —2%a)(1 — 2%*b)(1 — xc)

S|

(2.20)
€ is the ‘index version’ of the vacuum Casimir energy of the Abelian theory on S° x R. See
appendix B. The terms in the numerators can be easily understood from the BPS fields
in the free Abelian tensor multiplet. The first two terms come from two complex scalars
(RlvRQ) _ (170) (071)

(1j2ds) = (I)(o,o,o) and <I>(0’0’0). The next 3 terms come from

three chiral fermions with charges llfgﬁljfji) = \I}Eti)ﬂ’ \I'EIJ_F)JF) and \I/Eii)_

denote j:%. The final term +z'? is for a fermionic constraint coming from a component

) _
(+++)
The three factors in the denominator come from acting three holomorphic derivatives to

the above BPS fields and constraints, which have R} = Re = 0 and (j1, jo, j3) = (1,0,0),
(0,1,0) and (0,0,1).
The contribution £ is normally ignored in the literature on the superconformal index,

(among 5 real) taking charges ®
) where +

of the Dirac equation which contains BPS fields and derivatives only, (V)

but should be there as an overall multiplicative factor in path integral approaches [23].
Of course the index (2.19) can be defined in non-Abelian theories with the same (2,0)
superconformal algebra.

There are two interesting limits of this general index which we consider in this paper.
Firstly, one can take z — 0, y — 00, keeping 2%y = ¢ fixed. The letter index z becomes
z = ¢ in this limit, yielding .

Z =1 0)— . 2.21
lim (20) (2.21)

The first factor either goes to zero or infinity. As we explain in appendix B, the Casimir
energy for the 6d (2,0) theory is expected to be negative. In any case, one normally
considers the remaining factor 1%(1, which is the half-BPS partition function which acquires
contribution from operators made of a single complex scalar. Its non-Abelian version for
U(N) gauge group [18] is explained in section 3.3.

Another limit, which is of more interest to us in this paper, is obtained by taking
all but one fugacity variables to be 1, so that more cancelations are expected to appear
than the general superconformal index. We call this the unrefined index. To explain
this limit, we start by noting that the supercharges chosen above commutes with ¢ — R;.
The fugacity conjugate to this charge is a particular combination of the four fugacities



x,y,a,b(,c). We turn off three fugacities to 1 apart from the one conjugate to € — Ry,
which we call q. More concretely, we first rewrite the measure in (2.19) using the BPS
relation € = 2Ry + 2R + j1 + j2 + J3:

$36+j1+j2+j3yR1*R2aj1ijst — x46(yx72)R1 (yx2)*R2aj1bj26j3 ] (2.22)

Then setting @ = b = ¢ = 2%y = 1, and defining ¢ = 2*, the measure becomes ¢~ . Note
that, as the half-BPS energy bound in 6d is € > 2|R;|, ¢ — R; is positive definite for all
states. Rewriting the unrefined letter index (2.20) using ¢ only, one obtains

9+¢ -3¢ +¢ ¢ c q o TT L
z= e :1—q7 Z:qOPE[l_(J:qOTHI_qn. (2.23)
Although the second limit is very different from the first limit above for the half-BPS states,
it has a special property associated with the same 16 SUSY. Namely, ¢ — R; commutes with
exactly the same 16 supercharges preserved by the half-BPS states considered in the last
paragraph. Superconformal indices can be defined by choosing any 2 mutually conjugate
supercharges ), S among them. One would obtain the same result no matter which pair
one chooses.

The R-symmetry twist we introduced above for the Abelian theory provides the chem-
ical potential to Ry as well, so that we weight the states by e #(¢~F1)_ The 16 SUSY of
the 5d theory refers to those in 6d which commutes with ¢ — R;. Thus, we expect the
partition function of this 5d theory with 16 SUSY to be the second limit of the supercon-
formal index, with identification ¢ = e=# of the fugacity and the gauge coupling. During
detailed calculations in later sections, we shall use localization by picking any of the 16
SUSY of the theory. The result is guaranteed to be the same from 5d perspective as the
path integral preserves all 16 SUSY, among which we only use a pair. This is consistent
with our observation in the previous paragraph from the 6d perspective, that same result
will be obtained no matter what supercharges one chooses to define the index.

An important property of the second limit is that the information on the vacuum
Casimir energy is not lost. So if one can compute the partition function for non-Abelian
theories, the N3 scaling is supposed to be calculable in a microscopic way.

The information on the above two limiting cases of the superconformal index is all
encoded in the following simplified index. Namely, we consider an unrefined index which
contains only two chemical potentials conjugate to e — Ry, e — Ro. In (2.20), this amounts to

e—Ry qngg

turning off a, b, c and keeping z, y only. We weight the states as ¢ . The resulting

letter index for the Abelian theory becomes

| _ 06+ die — 36763 + aja3
(1 —q1g2)?

The first term in the numerator comes from a complex scalar which defines the half-BPS

(2.24)

states. The scaling limit ¢ — 0, g2 — oo which keeps ¢ = qlqg finite takes the above letter
index to ¢, which yields the desired half-BPS partition function for the Abelian theory. In
the 5d reduction, the parameters 5, A are related to ¢1, g2 by

g =e Pt gu=ePUD g=qg3 =P (2.25)



The half-BPS limit amounts to taking
g—o0, A—=2, B(2—A)=fixed. (2.26)

In section 3.2, we shall explain the structure of the S° partition with two parameters 3, A
which is supposed to capture the 6d index Tr[(—1)F¢q]~ i q5 Ray,

With more twists with the global symmetries of the theory, including R-symmetries
above as well as spatial rotations, it will be possible to obtain a 5d action which pre-
serves less supersymmetries, and presumably on a squashed S°. Then one can reduce the
Abelian theory along the circle to obtain a 5d theory, and calculate the partition function
after a non-Abelian generalization which can be used to study the general superconformal

index [21, 22] of the 6d (2,0) theory. This problem is studied in our later work [13].

2.2 Non-Abelian theories

We generalize the above Abelian 5d theory on the 5-sphere, with SO(3) x SO(2) subgroup of
SO(5) R-symmetry preserved by the curvature coupling, to the non-Abelian gauge groups.
We find that the action is

S = fmfm{l%FW+ D¢UW¢+ M#DA w%wP—iﬂypﬁq
gYM 2
%w’) AT )~ Cened®6, ¢ (2.27)

a\2
+ﬁ(¢ )°+ 3,

where I,J =1,2,3,4,5, a=1,2,3, i=4,5 are the vector indices of SO(5) R-symmetry. *
and 4! are 4 x 4 gamma matrices for the spatial/internal SO(5), respectively. This action
is invariant under the following 16 supersymmetries:

—MAM:%Mmﬁ—%JwA (2.28)
1 1

—iop! = —=XN3Te + 23T
2 2

. 1 . . i .

—id\ = 5 MV’V“VG_FZDMQZ)IV“’VIG_*[QSI ¢J] IJ€_|_ ¢a a45€+ qsz,yz 45
1

—25/\T _ —§€T’YHVF'UIV+Z.€T ~1 ;LD ¢I . '}‘ 45a¢a_ T 45,Yl¢l 26T§/1J[¢17¢J]

where ¢ satisfies .

. 1 .
Ve =oomd e, Vel = — ety 4 (2:29)

on S°. As we already explained with the Abelian theories, we take e, with 4% = +1
eigenvalues, which is related to e_ with —1 eigenvalue by a symplectic charge conjugation.

We explain the reality property of the action and SUSY transformation in some de-
tail. Imposing the symplectic Majorana conditions for all matter and Killing spinors, the
action (2.27) is real apart from the last term which is cubic in the scalars. Also, we note
that the SUSY transformations between scalars-fermions are all real, while those between
vector-fermions are all imaginary, i.e. violating reality condition. The factor —i we inserted
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on the left hand sides of (2.28) guarantees the above property.! So in the path integral with
this action, the 16 SUSY transformations should be regarded as symmetry transformations
associated with changes of some integration contours. The localization method that we
shall use later in this paper applies with such a complexification.

Technically, we started with the Abelian theory on S° obtained by a Scherk-Schwarz
reduction from 6d, and then added non-Abelian terms to SUSY and action, trying to secure
16 SUSY. We think the complex transformation and action are compulsory consequences
of this analysis, as we also tried but failed to find other real versions. At least one can
motivate why gauge fields-fermion part of the transformation could be imaginary from
the Abelian theory (in which case the action is actually real). Consider some part of 16
SUSY, e.g. 8 SUSY that we consider in the later part of this section. This choice of 8
SUSY provides a notion of vector and hypermultiplets. The supersymmetric reduction
of the free hypermultiplet part is quite clear, and we find no reason to ruin the reality
of the SUSY transformation in this part. However, the gauge field/fermion part seems
somewhat subtle. In the Lorentzian theory on S° x R, the self-dual 3-form condition
Hyp = %ewpaﬁﬂ B0 can be solved by naturally taking F),, = H,,0 to be independent
momentum-like fields, subject to 6d Bianchi identity for Hysnp. In the Euclidean theory on
S5 x R, covariant self-dual condition cannot be imposed. Still we want to secure the number
of degrees of freedom as this will be natural for getting the correct physics. If we stick to
the definition of F},, as H,,0, one would have to continue F),, to H,,6 = —iH,,0 = —iF},
along 7 = it. This extra factor of ¢ would make the vector-fermion SUSY transformation to
be imaginary. Combined with the formal SUSY checks that we did, which independently
yielded imaginary transformations, we feel that (2.28) is somewhat inevitable.?

One can check that the supersymmetry algebra is SU(4|2). Firstly, one can obtain the
following commutation relations
a 3 ) a .t ad J a 4i t ~abz45 b
[01,02]¢" = 2ie1y"e2Dpg® + 2ieri  e2[¢7, ¢ + 1777 V29
, 24 .

= Lu¢” +i[A, %) + e el 3Perq”, (2.30)
51 8oldt = etk i cfad J i 2if¢jj
[01,02]¢" = 2ie1y"e2 D¢’ + 2ier  e2d”, ¢] — —ereacd

= Lo¢' +i[A, ¢') + ~eleace?

. . 2 4 i
[01,02]A, = QZEJ{"}/VGQFV’u + 2617162DM¢I — ;éjehﬂfyzeggb]
= L,A, +D,A

1
[01,02] A = Lo\ + i[A, A\] + Z@WWV)\ — il e — 2@'6%“62&“45)\ + (eqn of motion)

!Compared to the 5d maximal SYM action on the flat Euclidean space, perhaps this —i factor is uncon-
ventional. In the last case, the reality condition is often ignored as we are in a Euclidean space.

2However, one could have imposed different reality conditions on various fields. For instance, the choice
of [24] is different from ours in many places. Although not all the prescriptions in [24] are well motivated to
us, by suitable analytic continuations or complexifications we can make half of our SUSY to fit into theirs.
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where

ot = 22’617“62, A= —21617“62AM+261’~}/162¢I,
Ly¢" = v"9,¢", Ly¢® = v"0,¢" LA, = v"0,A,+0,0" A, ,
O = gl LAy (2.31)

In 6d SU(4|2), the bosonic subgroup is SU(4) x SU(2) x U(1), where the U(1) part is e — R;.
By dimensional reduction to S%, one is only left with —R; which appears on the right hand
side of (2.30) as rotations by €“/¢/. Also, using the following Fierz identities

(cwea) (™3 %er) = (e (™ wi®e) - (e ie)
+é(€h°"8 e1) (57" Yap1 7 €2)

(EJ{VMV%BQ)(E;%Q) = _%(6164)(5;&’)’1/'}’”%’4562) - %( J{’Yaez;)(e;*y,/yafy“”r}‘lg’q)
J%(éhaﬁ e1) (b1 vas™ A 0 e2)

and taking all spinors to belong to e_, one can check for v* = 2ie;yHeq, wH = 2i6§7“64 that

vl = Lot = ~ (o) (5% ) + 2 (v 46 (e
r 1 3 r 1 3
8 ) 8 i
= (cfea)(elr"3Pe2) — (elr*ea) (e}iPea) - (2.32)

Normalizing spinors as GLEB = a3 where o, f = 1,2, 3,4 are for 4 of SO(6), one obtains

4
[U@ﬁ)vﬁé]u — —; <5B,?/'L)g6 - 6@6’05/3) 5 (233)

which is forming the desired SU(4) ~ SO(6) algebra. SU(2) part of the algebra is also easily
visible as rotations on ¢*. So we interpret it as the 5d reduction of SU(4|2) C OSp(8|4)
superconformal group for the 6d (2,0) theory, commuting with € — Rj.

By taking all ¢;’s to be e_ above, we obtained the anti-commutation relations of the
type {Q, S}. The commutation relations of the form {Q, Q} or its conjugate {5, S} can be
studied by taking €; to belong to e_ and ey to belong to e in (2.30). Then, one finds

eJ{’y“eQ =0, eJ{ﬁ‘ZEQ =0, EJ{EQ =0 (2.34)
by studying i5*° = (i5*°)T eigenvalues. Thus, the bosonic elements of the superalgebra do
not extend beyond SU(4/2). For instance, the analysis for 5d SCFT with F'(4) symmetry
would have yielded {Q,Q} ~ P, {S,S} ~ K as in [25], but they naturally do not appear
in our case.

In the next section, we shall use the localization method to perform the path integral
for the partition function. To this end, we attempt to make some part of the supersymmetry
algebra to hold off-shell. The most important requirement is that the single supercharge,
or a pair of conjugate supercharges, which we choose to perform localization calculation
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takes the required algebra (nilpotency) off-shell. We take 8 of our 16 SUSY, and decompose
the field into the vector and hypermultiplets. The vector multiplet part of the algebra is
made off-shell for all 8 SUSY by introducing 3 auxiliary fields, while hypermultiplet part
of the algebra is made off-shell only for a subset which includes a pair of Hermitian SUSY
generators. This strategy is all spelled out in [24].

With the internal gamma matrices chosen as (2.5), the 8 SUSY are chosen by taking
43¢ = —e. The internal charge conjugation matrix is taken to be C= 4% =io0? ®03. One
can write the 8 SUSY and 16 component fermion \ as

(04 (00

€4, XA, ¥4 for A =1,2 can be regarded as SU(2) spinors. This SU(2) symmetry is broken
in the action by curvature couplings, and only the Cartan generator proportional to o2 is
a symmetry. The SO(5) origin of this U(1) can be easily traced by noticing 4'? = ic® ® 12,
4% =03 ® 03. The U(1) acts on x4 as a simultaneous rotation on 12 and 45 planes,
while on 14 as opposite rotation on the two 2-planes. For later use, we take a complex
4-component spinor 1 on S° as ¢ = 2. The first component ' is related to ¢ by a
symplectic-Majorana conjugation using SO(5) x SU(2), inherited from our SO(5) x SO(5)
symplectic-Majorana conjugation. Let us also define the scalars as

1 1
_ 3 1_ 4 .45 2 _ 1, ;42
= s = — — 1 y = — + 1 . 236
P=9¢", ¢ ﬁ(cb ?°), q \/5(<b ¢°) (2.36)
The real scalar ¢ participates in the vector multiplet, while ¢? belong to the adjoint
hypermultiplet.
For the vector multiplet, we introduce three auxiliary fields D!, whose on-shell values
become )
i
D' = —(o")’la” qa] - ~030 . (2:37)
The off-shell Lagrangian that we shall write in a moment is invariant under
—i6A, = ixTy,e (2.38)
—idg = x'e
1 1
—i0y = B Y e —iDypyte + ;¢0'36 +iD!ole

1 1
—iox! = *§FMVET’)/‘MV — ieTv“Dugb - ;ETOB(;S —icla' D!
—i6D! = Dyxffy“afe — [p,xToTe — %XTJIJ?’e ) (2.39)
The off-shell SUSY algebra including the 8 Killing spinors is SU(4|1), and is given by
[51, (52]14” = §”8VAH + 8H§VAZ, + DMA,
[517 52]¢3 = g#aﬂ¢3 + Z[Av ¢3] + p¢3a
1 , 3 3
(01, 8a]x = €"0ux + 7O A +i[AX] + Spx + TR oMy,

[61,02)D" = €19, D" +i[A, D] + 2pD! + 3R"/D’ (2.40)
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where

f“ = 27;517#62, A= —2i€1’y“62A“ + 26162¢3,
29
e p«gl/] +§)\w)\ [ p= gD (617M€2)7
9
R = gz(g]_’y“O'IJDMEQ - Dugl’y“U]JEQ) . (2.41)

These results are all found in [24].

We also consider an off-shell generalization of the hypermultiplet algebra. As the off-
shell generalization of the whole 8 SUSY algebra cannot be achieved with a finite number
of auxiliary fields, we follow the strategy of [24] and demand that we have a single off-shell
nilpotent supercharge, with which one can do localization calculations. In other words,
we are interested in a SUSY which satisfies 6> = 0 off-shell (up to a bosonic symmetry
generator) with a given commuting spinor € parameter. With a bosonic ¢ chosen among
the 8 SUSY generators explained above, we follow [24] and consider another bosonic spinor
parameter ¢ satisfying

de=éle, (MTCeP =0, e+ efyre=0. (2.42)

One introduces two auxiliary complex fields F4, having 0 on-shell values, and consider
the following SUSY transformation with a commuting Killing spinor (which reduces to our
on-shell SUSY upon taking F4 = 0):

A= V2i(e)Ny,  6qa = —V2ivTeq

3 i Y
5 = V2 [—Dquv“eA +[¢%, qale* — ?QA(US)ABEB - gqfxe — ZFA’EA]
3 T B i

5l = V3| Dy + e ] — 120 - e — (e

Cor
SFY = VAE [ Db+ L - [¢3 9= Valuaa]

OFy = V2 [—wa — oot 6] - Vel (o )A]] enr (243)

This is a special case of [24] which has ——q 46, £4) terms on the right hand sides with

» 2r
a choice of their mass parameters. The SUSY algebra for a given commuting e is

3 1
§2¢t = ¢"0,q™ +i[A, ¢ + ZRU(UUQ)A + ;qA

1 ) 1
5% = §1ou + ZGWVWw + 1A + Z"Lﬁ

5 1

§2FA = erg, FA 1A, FA) + Zﬁ’”(&”F)A/ + 27FA/ : (2.44)
where
M = —jelyle, A= ieTV“eAH + ¢, Cla ”gy] + 5)\(0)\ ;
RIJ _ —%Ja”y“Due, LT _ %gﬁuvupﬂg . (2.45)
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In the above off-shell formulation, the Lagrangian invariant under the above 8 SUSY trans-
formations is given by

5:92 4F F’“j ( H¢) + X,-)/MDX 2DIDI_;D3¢+ﬁ¢2_§XT[¢,X]
Y M
1 ‘ ) o
+EXT0'3X+ ’D“quz +“/JT’Y#D#¢ + ’[¢7 qAH2 N D[(UI)AB[qB,qA] _pA Fu

} 3 4 1
—ole’ an+ Sla P+ 1a* P+ ivt o, 0]+ V20 a, g - VEilga M+ ot
(2.46)

The integration contours for D!, Re(F4), Im(F“) are taken to be on the imaginary axes.

We can generalize the theory preserving 8 SUSY with a continuous parameter A,
whose Abelian version we introduced in section 2.1 (corresponding to a generalized Scherk-
Schwarz reduction). The generalized Lagrangian is

1 1 L1 5
Ly = ——tr| T FuF™ + S(Dud*) + D2 + 5 (6% + 7| ¢'* - *DIDI
95y 2 2r
1—2A 1—-2A
—*¢3D3 <[qA ¢°] +i 5 CJA) ([¢37qA] +ZqA>
r 2r
QA

qalo") ([D D - )

; , 1 o,
+§XT7“DMX + ity Dy + ffof?’x — FyFA

5w )+ VE o] - Vil T
(2.47)

—5 1ot vt (16501 +

When A =1, it becomes our previous action with 16 SUSY. It is invariant under

= V2i()Ay, dGa = —V2iYTen
4 3 34 B 1—2A 4 A
5 = f[ Dugaye* + [¢°, qale™ — ﬂq/x(a ) pe” +i qae” —ilFaé ]
oyt = [e Y D,,q" +6A[_A %] — ;’ie;(03)ABqB+i%eTchA —i(éT)A/FA/}
SFA — V3 [—VHDMﬁ ~ iR - [l Vel
3w = ~2 | Dty =L 2Rt — 1,6 Va6 e (2.48)

and same SUSY transformation on vector multiplet fields. One can identify the fields and
parameters in our theory and [24] as

¢* = —iogsr, X =—idgsr, i0'D'=Dysr,q¢*=qhsr, =vV20msr. (2.49)

Our parameter A — % is proportional to their hypermultiplet mass associated with a global
symmetry. The off-shell SUSY algebra for the vector multiplet is the same, while the
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off-shell algebra for a given commuting Killing spinor for hypermultiplet becomes

1—2A 4

2r 9
1-2A
2r v

PEY = 0, Y ilA Y 1 DRI G P

, 3
52qt = €"0,q™ +i[A, ¢ + ZR”(O”Q)A -

1 .
5% = €19 + 10w+ ik
1—2A 4
FA .
2r
In section 3.3, we shall use this theory to calculate the perturbative partition function,

(2.50)

which we suggest would be part of a more general superconformal index.

3 5-sphere partition function as a 6d index

In this section, we study the partition function of the maximal SYM on S° and the theory
with 8 SUSY that we considered in the previous section.

We first consider the theory with 16 SUSY. We choose a commuting Killing spinor e
to be a linear combination € = et +¢~, where €T satisfy the following projection conditions

0Pt = ket APe" = Fiy'let = LinMeT = . (3.1)

+

The explicit expressions for e are (see appendix A, 1y there)

e = ei%yeg , (3.2)

where constant spinors e+ are conjugate to each other as (ef)* = C ® (io?)ey. y is the

angle coordinate of the Hopf fiber of S°, over a CP? base. The following spinor bilinears
will be useful:

o = elyte, Juw = Vv, = —2@'?7“,,6"' (= el Ne?2 — e A 64) . (3.3)

Juv is the Kahler 2-form of CP?, and v* is the translation generator along the fiber y

direction. They satisfy V,J,, = 2y With this €, we can add any term to the

G-
Lagrangian QV which is exact in th: cg)rresponding supercharge Q, without changing
the value of the final integral. This property relies on the property that the chosen Q is
nilpotent, Q% = 0. Actually, since the chosen Killing spinor Q is real, it amounts to picking
one Poincare supercharge @ with its conjugate conformal supercharge S, and taking a real

linear combination of the two. Thus one actually finds
0? ~ {Q, S} = (symmetry generator) (3.4)

where the right hand side comes from a suitable combination of the bosonic generators
appearing in the {Q, S} part of the SU(4|2) algebra. Thus, only when we choose V' in the
Q-exact deformation QV to be neutral under the rotation of {Q, S} (which we will do),
one is guaranteed not to change the partition function by deformation.

O-exact deformations that we introduce are

1 1 1 2
5 ((3301%) = 3Eu P = 3P0, FypFoy + (D) + (qu + ¢D3) — (DY)? — (D*)?

. . 1 1 i
—ix"y" Dy — o, xT]x + ;XTGR’X - ngv,n“a?’x -4 XM (3.5)
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for the vector multiplet, and

1

50((@)y + vt Euh)
T, i, 1_ 4 _ _ /

= [Dug)? — ~v"q0*Dyq — ~v"qDuq + —@q" + —@d® + (6%, ¢ — FaF4
r r r r

Tl 1wyt U gyt 6P
+ip'y Du¢ - 277““ (0 '7u¢ - ZTJ P 7uu¢ + it [¢ a,(/}] (3'6)

for the hypermultiplet. Here, the commuting Killing spinors are normalized to satisfy
e'e = 1, and traces are assumed for every terms.® It is easy to see that the corresponding
V’s that we introduced above all commute with {Q, S}. As V are chosen to take the form
of (6®)1® for various fields ®, the charge of V under {Q, S} is basically the inverse of the
charge carried by the chosen SUSY generator 6. As this is a linear combination of @, S,
it suffices to show that @,S are both neutral under the rotation of {@, S}. This trivially
follows from the following Jacobi identities (with {Q,Q} = {5, S} = 0)

{Q.5},Ql=0, {Q,8},S]=0. (3.7)
Thus we are allowed to introduce the above O-exact deformations.

3.1 Perturbative partition function and Casimir energies

Turning on the above Q-exact deformations and taking their coefficients to be large, one

is led to a Gaussian path integral around a set of saddle points satisfying

"9, D'=D*=0, q=q;=0, F'=F"=0,
(3.8)

while taking all fermion fields to zero. These equations can be easily obtained by studying

1
Ful’zﬁ\/geumﬁv“aFmv D=0, Dg:;

the vanishing SUSY condition, or alternatively by taking the bosonic part of the Q-exact
deformations (3.5), (3.6) to be zero. See also [24, 26] which study the same equations.

The first equation of (3.8) is for the self-dual Yang-Mills instantons on the CP? base (in
the convention that the Kahler 2-form of CP? is anti-self-dual), while any component of the
gauge field along the Hopf fiber is demanded to be zero from v#F},, = 0. The configurations
solving this equation are called ‘contact instantons’ in some literatures, and recently studied
on general contact manifolds, including S° [27, 28]. In particular, [28] explores the twistor
construction of this equation, which could probably be used to get a better understanding
of its solutions. If the topological quantum number for these instantons on CP? is nonzero,
one would get various non-perturbative corrections to the partition function. We shall
study them in the next subsection, and focus on the perturbative part here.

With F,, = 0, one can take the gauge connection to zero on S °. The only nonzero fields
at the saddle point are D3 and ¢ satisfying D? = %gb, where ¢ is a constant Hermitian
matrix. The saddle point is thus parameterized by the Hermitian matrix ¢, which we
should exactly integrate over after all other Gaussian fluctuations are integrated out. The

3We add two conjugate terms to form V in the hypermultiplet part (3.6), as this simplifies the determi-
nant calculation significantly.
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integration over ¢ will come with various factors of integrands. Part of them will come from
the contributions from the determinants of quadratic fluctuations, which we shall turn to
in a while. There is also a factor of integrand that one obtains by plugging in the saddle
point values of the fields into the original action. Plugging in nonzero ¢ and D? into (2.46),
this becomes

_ Amsp? 2tr(rrp)?  2m2trA?

—So 5 2
e So=——1[d x\f tro” = = (3.9)
’ 93w 932/1\/1 B g7
where [ d%\f = 73r° on a 5-sphere with radius r, 42“2 = Tll = 2” ylelds 47237"3 = QFZTQ,

and we defined \ = r¢q at the last step. The natural Justlﬁca‘mon of the 9y M v, [ relation
we use here is given in section 3.2.

From the vector multiplet bosons, one has to diagonalize the differential operator
appearing in the following quadratic fluctuations in the Q-exact deformation (¢ fluctuations
simply decouple to yield a constant factor, which cancels out with other constant factors):

1 1
EFH,,FW - ZEWP%“FMFPU

— An (-D%Z + D,D” +46" — 2(Juav- D + QU[MJ/\]pr)gAV) A, . (3.10)

Using the basis of the vector spherical harmonics introduced in appendix A to diagonalize
the differential operator, one obtains the following determinant:

0 2 2
(k+1)(k+2)%(k+3) (k4+1)(k+2)" (k+3) (k+1)(k+2)
detyy = [[ Tk +4+irale) o (k + ira(g)) " a2 RS
acroot k=0
[eS) k 22
(k+2) ((k+2)% —m?)
[T TI (¥ +4k—2m+9+r*a(4)?) 8 : (3.11)
k=1m=—k+1

See appendix A for the derivation. From the vector multiplet fermions, one obtains

detv7f =
o0 5 )
H H(k+4+ira(¢))w(k+ira(¢))<k+1)(kﬁ) (k43) <k+1)2(k+2) (k+3+ira(¢))w
acroot k=0
s k 2,2
2 2 9 W
XH H (K + 4k = 2m + 9 +1°a(¢)?) . (3.12)
k=1m=—k+1

Dividing the two contributions, one obtains

det e ) k+1)(k+2 s (k+1) (k+2)
dtv’f: H H(k—l—S—i—zra Hk—l—zra )z
etvip acroot k=0 k=1

= I TIk+ira(e)=+2. (3.13)

a€croot k=1

This agrees with the result found in [26].
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From the hypermultiplet, one obtains from the two complex scalars ¢1, go the follow-
ing:

detHvb =
< 1 k 1
H H (k1) (k+2)2 (k+3) H (b +2)((k+2)2=m?)
aeroot k=0 ((k + 2)2 + r2a(¢)?) Iz m=—k (k2 + 4k + 1+ 2m + r2a(¢)?) 8
(3.14)
where m =k, k — 2,k —4,--- ,—k. From hypermultiplet fermions,
dety ;=
i ) (k+1)(k+2)?(k+3) _ (k+1)(k+2)
IT TIk+2+ira(e)) G -2 (3.15)
agcroot k=1
00 k 2_ 2
) (k+1)(k+2) (k42)((k+2)"—m~)
X H(k+ 1+ira(e)) 2 H (k* + 4k + 1+ 2m + r’a(¢)?) 8
k=0 m=—k+1
The net hypermultiplet determinant is
dety detpr
. 3.16
detH’b H H (k + ira( ( )

acroot k= 1

Again see appendix A for the derivation.
Combining the contributions from vector and hypermultiplets, one obtains the follow-
ing perturbative determinant

[T 1 +ira@)?= T] [I**+ra@® = ] %Siifgz;‘;(‘z’)). (3.17)

a€Eroot k=1 a€croot k=1 aEroot

Here, we used [[po k% =2 after zeta function regularization [26]. The integration over
the Hermitian matrix can be replaced by an integration over the eigenvalues with the Van-
dermonde measure inserted, which cancels a(¢) in the denominator of (3.17). Combining
it with the classical Gaussian measure, and defining dimensionless variables A = r¢, one

1
Zoert = —— [ d\
pert |Wr/ ¢

where W is the Weyl group. One thus finds that the perturbative part of the partition

obtains
2m tr()\2

H 2sinh(ra(N)), (3.18)

a€root

function, with 16 SUSY, takes the form of the pure Chern-Simons partition function on
53 [29]. See also [30-32] for some later studies of the same expression.

