111 research outputs found

    Genetic Diversity in Commercially Exploited Fish Species

    Get PDF
    This document was produced during a three-day seminar and workshop on the genetic diversity of commercially exploited fish species in Nordic waters held at Holar College, Iceland. The aim of the seminar was to discuss current knowledge regarding the effects of commercial fishing activities on the genetic diversity of wild, marine species of fish in Nordic waters, and to provide recommendations for necessary actions to minimize further loss of such diversity. This document expresses the joint view of the selected expert scientists invited to the meeting, and the content concerns fish populations exploited in Nordic waters. During the first day of the meeting short presentations were given by some of the participants. The abstracts of these presentations are provided in Appendix 2 and the full workshop program in Appendix 3. Topics for working groups during workshop sections, and the initial questions outlined for the discussions are provided in Appendix 4

    Estimating salinity stress via hsp70 expression in the invasive round goby (Neogobius melanostomus) : implications for further range expansion

    Get PDF
    Species invasions often occur on coasts and estuaries where abiotic conditions vary, e.g. salinity, temperature, runoff etc. Successful establishment and dispersal of non-indigenous species in many such systems are poorly understood, partially since the species tend to show genetic and ecological plasticity at population level towards many abiotic conditions, including salinity tolerance. Plasticity may be driven by shifting expression of heat shock proteins such as Hsp70, which is widely recognized as indicator of physical stress. In this study, we developed a qPCR assay for expression of the hsp70 gene in the invasive round goby (Neogobius melanostomus) and tested the expression response of fish collected from a brackish environment in the western Baltic Sea to three different salinities, 0, 10 and 30. hsp70 expression was highest in fresh water, indicating higher stress, and lower at brackish (ambient condition for the sampled population) and oceanic salinities, suggestive of low stress response to salinities above the population’s current distribution. The highest stress in fresh water was surprising since populations in fresh water exist, e.g. large European rivers and Laurentian Great Lakes. The results have implications to predictions for the species’ plasticity potential and possible range expansion of the species into other salinity regimes

    Genetic analysis redraws the management boundaries for the European sprat

    Get PDF
    Sustainable fisheries management requires detailed knowledge of population genetic structure. The European sprat is an important commercial fish distributed from Morocco to the Arctic circle, Baltic, Mediterranean, and Black seas. Prior to 2018, annual catch advice on sprat from the International Council for the Exploration of the Sea (ICES) was based on five putative stocks: (a) North Sea, (b) Kattegat–Skagerrak and Norwegian fjords, (c) Baltic Sea, (d) West of Scotland—southern Celtic Seas, and (e) English Channel. However, there were concerns that the sprat advice on stock size estimates management plan inadequately reflected the underlying biological units. Here, we used ddRAD sequencing to develop 91 SNPs that were thereafter used to genotype approximately 2,500 fish from 40 locations. Three highly distinct and relatively homogenous genetic groups were identified: (a) Norwegian fjords; (b) Northeast Atlantic including the North Sea, Kattegat–Skagerrak, Celtic Sea, and Bay of Biscay; and (c) Baltic Sea. Evidence of genetic admixture and possibly physical mixing was detected in samples collected from the transition zone between the North and Baltic seas, but not between any of the other groups. These results have already been implemented by ICES with the decision to merge the North Sea and the Kattegat–Skagerrak sprat to be assessed as a single unit, thus demonstrating that genetic data can be rapidly absorbed to align harvest regimes and biological units

    A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c

    Get PDF
    Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy

    A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c

    Get PDF
    Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy

    Mixed-stock analysis of Atlantic herring (Clupea harengus): a tool for identifying management units and complex migration dynamics

    Get PDF
    We developed and validated a mixed-stock analysis (MSA) method with 59 single-nucleotide polymorphisms selected from genome-wide data to assign individuals to populations in mixed-stock samples of Atlantic herring from the North and Baltic seas. We analysed 3734 herring from spawning locations and scientific catches of mixed feeding stocks to demonstrate a "one-fits-all" tool with unprecedented accuracy for monitoring spatio-temporal dynamics throughout a large geographical range with complex stock mixing. We re-analysed time-series data (2002-2021) and compared inferences about stock composition with estimates from morphological data. We show that contributions from the western Baltic spring-spawning stock complex, which is under management concern, have likely been overestimated. We also show that a genetically distinctive population of western Baltic autumn spawners, ascribed low fisheries importance, contributes non-negligible and potentially temporally increasing proportions to mixed-stock aggregations, calling for a re-evaluation of stock definitions. MSA data can be implemented in stock assessment and in a variety of applications, including marine ecosystem description, impact assessment of specific fleets, and stock-rebuilding plans

    Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly

    Get PDF
    Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i) Is the population structure affected by longitudinal or latitudinal gradients?; (ii) Do geographic boundaries limit gene flow?; (iii) Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv) Is there evidence of a recent range expansion and (vi) what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean FST = 0.06, Dest = 0.12), and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies) were found. FST-and Dest-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats

    Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables

    Get PDF
    Abstract Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation.(undefined

    Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.</p> <p>Results</p> <p>Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.</p> <p>Conclusion</p> <p>The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.</p
    corecore