90 research outputs found

    No insulin degludec dose adjustment required after aerobic exercise for people with type 1 diabetes: the ADREM study

    Get PDF
    Aims/hypothesis: It is generally recommended to reduce basal insulin doses after exercise to reduce the risk of post-exercise nocturnal hypoglycaemia. Based on its long t½, it is unknown whether such adjustments are required or beneficial for insulin degludec. Methods: The ADREM study (Adjustment of insulin Degludec to Reduce post-Exercise (nocturnal) hypoglycaeMia in people with diabetes) was a randomised controlled, crossover study in which we compared 40% dose reduction (D40), or postponement and 20% dose reduction (D20-P), with no dose adjustment (CON) in adults with type 1 diabetes at elevated risk of hypoglycaemia, who performed a 45 min aerobic exercise test in the afternoon. All participants wore blinded continuous glucose monitors for 6 days, measuring the incidence of (nocturnal) hypoglycaemia and subsequent glucose profiles. Results: We recruited 18 participants (six women, age 38 ± 13 years, HbA1c 56 ± 8 mmol/mol [7.3 ± 0.8%], mean ± SD). Time below range (i.e. glucose 10 mmol/l) was greater for D20-P vs CON (mean ± SEM, 584 ± 81 vs 364 ± 66 min, p=0.001) and D40 (385 ± 72 min, p=0.003). Conclusions/interpretation: Post-exercise adjustment of degludec does not mitigate the risk of subsequent nocturnal hypoglycaemia in people with type 1 diabetes. Although reducing degludec reduced next-day time below range, this did not translate into fewer hypoglycaemic events, while postponing degludec should be avoided because of increased time above range. Altogether, these data do not support degludec dose adjustment after a single exercise bout. Trial registration: EudraCT number 2019-004222-22 Funding: The study was funded by an unrestricted grant from Novo Nordisk, Denmark. Graphical abstract: [Figure not available: see fulltext.

    The effect of antecedent hypoglycaemia on β2-adrenergic sensitivity in healthy participants with the Arg16Gly polymorphism of the β2-adrenergic receptor

    Get PDF
    Contains fulltext : 96423.pdf (publisher's version ) (Closed access)AIMS/HYPOTHESIS: Homozygosity for glycine at codon 16 (GlyGly) of the beta(2)-adrenergic receptor may alter receptor sensitivity upon chronic stimulation and has been implicated in the pathogenesis of hypoglycaemia unawareness. We compared the effect of antecedent hypoglycaemia on beta(2)-adrenergic receptor sensitivity between GlyGly participants and those with arginine 16 homozygosity (ArgArg) for the beta(2)-adrenergic receptor. METHODS: We enrolled 16 healthy participants, who were either GlyGly (n = 8) or ArgArg (n = 8). They participated randomly in two 2 day experiments. Day 1 consisted of two 2-h hyperinsulinaemic hypoglycaemic (2.8 mmol/l) or euglycaemic (4.8 mmol/l) glucose clamps. On day 2, we measured the forearm vasodilator response to the beta(2)-adrenergic receptor agonist salbutamol and the dose of isoprenaline required to increase the heart rate by 25 bpm (IC(25)). RESULTS: The vasodilator response to salbutamol tended to be greater after antecedent hypoglycaemia than after euglycaemia (p = 0.078), consistent with increased beta(2)-adrenergic receptor sensitivity. This effect was driven by a significant increase in beta(2)-adrenergic receptor sensitivity following hypoglycaemia compared with euglycaemia in ArgArg participants (p = 0.019), whereas no such effect was observed in the GlyGly participants. Antecedent hypoglycaemia tended to decrease the IC(25) in ArgArg participants, whereas the reverse occurred in the GlyGly participants (GlyGly vs ArgArg group p = 0.047). CONCLUSION/INTERPRETATION: Antecedent hypoglycaemia did not affect beta(2)-adrenergic receptor sensitivity in healthy GlyGly participants, but increased it in ArgArg participants. If these results also hold for participants with type 1 diabetes, such an increase in beta(2)-adrenergic receptor sensitivity may potentially reduce the risk of repeated hypoglycaemia and the subsequent development of hypoglycaemia unawareness in ArgArg diabetic participants. TRIAL REGISTRATION: ClinicalTrials.gov NCT00160056

    Combined Effects of Routine Blood Pressure Lowering and Intensive Glucose Control on Macrovascular and Microvascular Outcomes in Patients With Type 2 Diabetes: New results from the ADVANCE trial

    Get PDF
    Item does not contain fulltextOBJECTIVE: To assess the magnitude and independence of the effects of routine blood pressure lowering and intensive glucose control on clinical outcomes in patients with long-standing type 2 diabetes. RESEARCH DESIGN AND METHODS: This was a multicenter, factorial randomized trial of perindopril-indapamide versus placebo (double-blind comparison) and intensive glucose control with a gliclazide MR-based regimen (target A1C 0.1): the separate effects of the two interventions for the renal outcomes and death appeared to be additive on the log scale. Compared with neither intervention, combination treatment reduced the risk of new or worsening nephropathy by 33% (95% CI 12-50%, P = 0.005), new onset of macroalbuminuria by 54% (35-68%, P < 0.0001), and new onset of microalbuminuria by 26% (17-34%). Combination treatment was associated with an 18% reduction in the risk of all-cause death (1-32%, P = 0.04). CONCLUSIONS: The effects of routine blood pressure lowering and intensive glucose control were independent of one another. When combined, they produced additional reductions in clinically relevant outcomes

    Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans

    Get PDF
    N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebral disease has not been investigated. To study whether circulating NAA tracks cerebral NAA levels, and whether circulating NAA correlates with cognitive function and features of cerebral small vessel disease (SVD). Two datasets were analyzed. In dataset 1, structural MRI was acquired in 533 subjects to assess four features of cerebral SVD. Cognitive function was evaluated with standardized test scores (N = 824). In dataset 2, brain H-1-MRS from the occipital region was acquired (N = 49). In all subjects, fasting circulating NAA was measured with mass spectrometry. Dataset 1: in univariate and adjusted for confounders models, we found no correlation between circulating NAA and the examined features of cerebral SVD. In univariate analysis, circulating NAA levels were associated inversely with the speed in information processing and the executive function score, however these associations were lost after accounting for confounders. In line with the negative findings of dataset 1, in dataset 2 there was no correlation between circulating and central NAA or total NAA levels. This study indicates that circulating NAA levels do not reflect central (occipital) NAA levels, cognitive function, or cerebral small vessel disease in man

    Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    Get PDF
    BACKGROUND: Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG) neurons projecting to pelvic viscera (L1, L2, L6, S1) of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling. RESULTS: In studies of isolated DRG neurons in short-term (overnight) culture, we found that estradiol and estrogen receptor (ER) agonists rapidly stimulated ER-dependent p38 phosphorylation relative to total p38. Examination of DRGs following chronic estrogen deprivation in vivo (ovariectomy) showed a parallel increase in total and phosphorylated p38 (relative to beta-tubulin). We also observed an increase in ERK1 phosphorylation (relative to total ERK1), but no change in ERK1 expression (relative to beta-tubulin). We observed no change in ERK2 expression or phosphorylation. Although ovariectomy increased the level of phosphorylated ERK1 (vs. total ERK1), cyclophosphamide-induced lower urinary tract inflammation did not cause a net increase of either ERK1 or ERK2, or their phosphorylation. Inflammation did, however, cause an increase in p38 protein levels, relative to beta-tubulin. Prior ovariectomy did not alter the response to inflammation. CONCLUSIONS: These results provide new insights into the complex effects of estrogens on bladder nociceptor signalling. The diversity of estrogen actions in these ganglia raises the possibility of developing new ways to modulate their function in pelvic hyperactivity or pain states

    Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene

    Get PDF
    Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10-6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted. © 2014 Plenge et al

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury
    corecore