36 research outputs found

    Reimagining the potential of Earth observations for ecosystem service assessments

    Get PDF
    The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide

    A place-based approach to payments for ecosystem services

    Get PDF
    Payment for Ecosystem Services (PES) schemes are proliferating but are challenged by insufficient attention to spatial and temporal inter-dependencies, interactions between different ecosystems and their services, and the need for multi-level governance. To address these challenges, this paper develops a place-based approach to the development and implementation of PES schemes that incorporates multi-level governance, bundling or layering of services across multiple scales, and shared values for ecosystem services. The approach is evaluated and illustrated using case study research to develop an explicitly place-based PES scheme, the Peatland Code, owned and managed by the International Union for the Conservation of Nature’s UK Peatland Programme and designed to pay for restoration of peatland habitats. Buyers preferred bundled schemes with premium pricing of a primary service, contrasting with sellers’ preferences for quantifying and marketing services separately in a layered scheme. There was limited awareness among key business sectors of dependencies on ecosystem services, or the risks and opportunities arising from their management. Companies with financial links to peatlands or a strong environmental sustainability focus were interested in the scheme, particularly in relation to climate regulation, water quality, biodiversity and flood risk mitigation benefits. Visitors were most interested in donating to projects that benefited wildlife and were willing to donate around £2 on-site during a visit. Sellers agreed a deliberated fair price per tonne of CO2 equivalent from £11.18 to £15.65 across four sites in Scotland, with this range primarily driven by spatial variation in habitat degradation. In the Peak District, perceived declines in sheep and grouse productivity arising from ditch blocking led to substantially higher prices, but in other regions ditch blocking was viewed more positively. The Peatland Code was developed in close collaboration with stakeholders at catchment, landscape and national scales, enabling multi-level governance of the management and delivery of ecosystem services across these scales. Place-based PES schemes can mitigate negative trade-offs between ecosystem services, more effectively include cultural ecosystem services and engage with and empower diverse stakeholders in scheme design and governance

    The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests

    Get PDF
    Science and society are increasingly interested in predicting the effects of global change and socio-economic development on natural systems, to ensure maintenance of both ecosystems and human well-being. The Intergovernmental Platform on Biodiversity and Ecosystem Services has identified the combination of ecological modelling and scenario forecasting as key to improving our understanding of those effects, by evaluating the relationships and feedbacks between direct and indirect drivers of change, biodiversity, and ecosystem services. Using as case study the forests of the Mediterranean basin (complex socio-ecological systems of high social and conservation value), we reviewed the literature to assess (1) what are the modelling approaches most commonly used to predict the condition and trends of biodiversity and ecosystem services under future scenarios of global change, (2) what are the drivers of change considered in future scenarios and at what scales, and (3) what are the nature and ecosystem service indicators most commonly evaluated. Our review shows that forecasting studies make relatively little use of modelling approaches accounting for actual ecological processes and feedbacks between different socio-ecological sectors; predictions are generally made on the basis of a single (mainly climate) or a few drivers of change. In general, there is a bias in the set of nature and ecosystem service indicators assessed. In particular, cultural services and human well-being are greatly underrepresented in the literature. We argue that these shortfalls hamper our capacity to make the best use of predictive tools to inform decision-making in the context of global change.This work was supported by the Spanish Government through the INMODES project (grant number CGL2017-89999-C2-2-R), the ERA-NET FORESTERRA project INFORMED (grant number 29183), and the project Boscos Sans per a una Societat Saludable funded by Obra Social la Caixa (https://obrasociallacaixa.org/). AMO and AA were supported by Spanish Government through the “Juan de la Cierva” fellowship program (IJCI-2016-30349 and IJCI-2016-30049, respectively). JVRD was supported by the Government of Asturias and the FP7-Marie Curie-COFUND program of the European Commission (Grant “Clarín” ACA17-02)

    Areas Benefiting from Water Conservation in Key Ecological Function Areas in China

    No full text

    Social equity shapes zone-selection: Balancing aquatic biodiversity conservation and ecosystem services delivery in the transboundaryDanube River Basin

    No full text
    Freshwater biodiversity is declining, despite national and international efforts to manage and protect freshwater ecosystems. Ecosystem-based management (EBM) has been proposed as an approach that could more efficiently and adaptively balance ecological and societal needs. However, this raises the question of how social and ecological objectives can be included in an integrated management plan. Here, we present a generic model-coupling framework tailored to address this question for freshwater ecosystems, using three components: biodiversity, ecosystem services (ESS), and a spatial prioritisation that aims to balance the spatial representation of biodiversity and ESS supply and demand. We illustrate this model-coupling approach within the Danube River Basin using the spatially explicit, potential distribution of (i) 85 fish species as a surrogate for biodiversity as modelled using hierarchical Bayesian models, and (ii) four estimated ESS layers produced by the Artificial Intelligence for Ecosystem Services (ARIES) platform (with ESS supply defined as carbon storage and flood regulation, and demand specified as recreation and water use). These are then used for (iii) a joint spatial prioritisation of biodiversity and ESS employing Marxan with Zones, laying out the spatial representation of multiple management zones. Given the transboundary setting of the Danube River Basin, we also run comparative analyses including the country-level purchasing power parity (PPP)-adjusted gross domestic product (GDP) and each country's percent cover of the total basin area as potential cost factors, illustrating a scheme for balancing the share of establishing specific zones among countries. We demonstrate how emphasizing various biodiversity or ESS targets in an EBM model-coupling framework can be used to cost-effectively test various spatially explicit management options across a multi-national case study. We further discuss possible limitations, future developments, and requirements for effectively managing a balance between biodiversity and ESS supply and demand in freshwater ecosystems. © 2018 The AuthorsThis study was funded by the European Union's Horizon 2020 - Research and Innovation Framework Programme under grant agreement No. 642317 , granting funding to SD, SCJ, KK, SDL, JML, SB, FV, AF, TH, and FB. SDL has received additional funding from the European Union's Horizon 2020 - Research and Innovation Framework Programme under the Marie Skłodowska-Curie grant agreement No. 748625 , and SCJ from the German Federal Ministry of Education and Research (BMBF) for the “GLANCE” project (Global Change Effects in River Ecosystems; 01 LN1320A ). VH is funded by a Ramon y Cajal contract (RYC-2013-13979) supported by the Spanish Government. The U.S. Geological Survey Land Change Science Program under the Land Resources Mission Area supported KJB's contributions to this paper. We thank Van Bustic for constructive comments on an earlier draft of this manuscript

    On the value of soil resources in the context of natural capital and ecosystem service delivery

    Get PDF
    The ecosystem services approach endeavors to incorporate the economic value of ecosystems into decision making. This is because many natural resources are subject to market failure. As a result, many economic decisions omit the impact that natural resource use has on the earth’s resources and the life support system it provides. Hence, one of the objectives of the ecosystem services approach is to employ economic valuation of natural resources in micro- and macroeconomic policy design, implementation, and evaluation. In this article we examine valuation concepts, and ask why we might attempt to economically value the contribution of soils to the provision of ecosystem services. We go on to examine economic valuation methods and review economic valuation of soils. By surveying prices of soils on the web we are able to make a first, limited global assessment of direct market value of topsoil prices. We then consider other research efforts to value soil. Finally, we consider how the valuation of soil can meaningfully be used in the introduction of improved resource management mechanisms such as decision support tools on which valuation can be based, within the UN’s System of Environmental and Economic Accounts (SEEA) and policy mechanisms like Payments for Ecosystem Services (PES)
    corecore