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Chapter 6

Aquaculture Site-Selection and Marine
Spatial Planning: The Roles of GIS-Based
Tools and Models

Vanessa Stelzenmiiller, A. Gimpel, M. Gopnik and K. Gee

Abstract Around the globe, increasing human activities in coastal and offshore
waters have created complex conflicts between different sectors competing for
space and between the use and conservation of ocean resources. Like other users,
aquaculture proponents evaluate potential offshore sites based primarily on their
biological suitability, technical feasibility, and cost considerations. Recently,
Marine Spatial Planning (MSP) has been promoted as an approach for achieving
more ecosystem-based marine management, with a focus on balancing multiple
management objectives in a holistic way. Both industry-specific and multiple-use
planners all rely heavily on spatially-referenced data, Geographic Information
System (GIS)-based analytical tools, and Decision Support Systems (DSS) to
explore a range of options and assess their costs and benefits. Although ecological
factors can currently be assessed fairly comprehensively, better tools are needed to
evaluate and incorporate the economic and social considerations that will also be
critical to identifying potential sites and achieving successful marine plans. This
section highlights the advances in GIS-based DSS in relation to their capability for
aquaculture site selection and their integration into multiple-use MSP. A special
case of multiple-use planning—the potential co-location of offshore wind energy
and aquaculture—is also discussed, including an example in the German EEZ of the
North Sea.
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6.1 Reconciling Ocean Uses Through Marine
Spatial Planning

The last decades have witnessed an unprecedented race between different sectors
for access to the sea. With interests such as offshore renewable energy, sand and
gravel extraction, national security, fishing, and nature conservation all pushing for
more space, exclusive uses of marine areas are being replaced by a search for more
integrated solutions (Halpern et al. 2008b; Katsanevakis et al. 2011). Marine Spatial
Planning (MSP) has been widely advocated as one such place-based, integrated tool
for managing human activities in the marine environment (Douvere 2008; Douvere
and Ehler 2010; Collie et al. 2013).

A key challenge for MSP is to make spatial choices that strike a balance between
multiple ecological, economic and social objectives, typically identified through a
political process (Katsanevakis et al. 2011; Jay et al. 2012; Carneiro 2013; Foley
et al. 2013). Regardless of the governance framework present, or specific process
selected, sustainable spatial planning should account for the cumulative effects of
all human activities on the marine environment at meaningful ecological scales
(Halpern et al. 2008a; Stelzenmiiller et al. 2010). Tradeoff analyses using, for
instance, explicit weighting criteria can improve transparency in decision-making
and should form a crucial part of any MSP process (White et al. 2012;
Stelzenmiiller et al. 2014). These analyses should focus not only on economic and
ecological values, but also on social and cultural values associated with coastal
communities and the sea, many of which are extremely difficult to measure (Gee
and Burkhard 2010).

A recent EU Directive (EPC 2014a); (Article 3) describes MSP as a cross-cutting
policy tool, enabling public authorities and stakeholders to apply a coordinated,
integrated, and trans-boundary approach “to promote sustainable development and
to identify the utilization of maritime space for different sea uses as well as to
manage spatial uses and conflicts in marine areas.” The Directive specifically
encourages nations to explore multi-purpose uses in accordance with relevant
national policies and legislation, and encourages Member States to cooperate in the
sustainable development of offshore energy, maritime transport, fisheries, and
aquaculture. Nevertheless, existing MSP initiatives show that spatial planning
remains open to very diverse interpretations.

Although they do consider multiple maritime uses, early marine spatial plans
within the EU, such as the German plan for the EEZ, were often driven by specific
sectoral needs (Halpern et al. 2012; Collie et al. 2013; Olsen et al. 2014), often
reflecting changing political priorities, shifting prioritization among sectors, or
technological advances. This has been particularly apparent with regard to the
desired expansion of offshore renewable energy (Gimpel et al. 2013; Christie et al.
2014; Davies et al. 2014). Different ideas about how to implement MSP have also
emerged. Some marine spatial plans (e.g. in the UK) favor a broad, strategic
approach that sets out general guidelines for the use of sea areas, while others
(e.g. in Germany) are based on more detailed zoning, creating areas that favor a
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particular use and other areas where certain uses are prohibited (Schultz-Zehden
and Gee 2013, Jay and Gee 2014). As MSP develops from isolated initiatives and
projects into statutory plans, broad strategic planning and the concept of co-location
or multiple-uses of marine offshore areas are set to become more and more sig-
nificant (Buck et al. 2004).

6.2 Potential Benefits of MSP to Aquaculture

Effective spatial management is being recognized as one avenue for advancing
sustainable aquaculture development worldwide. Europe, keen to encourage growth
in the aquaculture sector, has published Strategic Guidelines that identify improved
access to space as one of four priority areas to be tackled (EPC 2014b). In the Baltic
region, even countries without existing aquaculture facilities are expected to consider
future operations as part of their emerging marine spatial plans (project 2013). The
Finnish regional fisheries administration prepared regional aquaculture site selection
plans that identify offshore areas where existing production can be concentrated and
new production begun, using a participative process and Geographic Information
System (GIS) mapping as a supporting tool (Olofsson and Andersson 2014).

Although aquaculture is usually mentioned in reports on Integrated Coastal Zone
Management (ICZM) and MSP, they rarely focus specifically on aquaculture siting
because of their multiple use orientation (Olofsson and Andersson 2014). The
English East Inshore and East Offshore Marine Plans (Government 2014) do
identify a range of “optimum sites of aquaculture potential” where other uses would
be restricted to preserve the potential for aquaculture development. In Germany, the
2014 draft spatial plan for Mecklenburg-Western Pomerania also calls for “spatially
compatible” siting of aquaculture operations to minimize environmental impacts
(MEIL; Ministerium fiir Energie 2014).

After initial hesitation in many countries, fisheries and aquaculture stakeholders
are now becoming actively engaged in MSP to secure the most suitable sites for
their activities (Jentoft and Knol 2014). MSP is also seen as a possible means of
resolving animal welfare issues (e.g. assessing maximum carrying capacities)
which can help improve public acceptance of the sector (Bryde 2011). These
considerations apply not only to existing types of aquaculture operations, but also to
future trends such as large offshore installations, potentially combined with offshore
wind farming, and specialized production, such as sturgeon, feed production,
nutrient removal, and energy production from micro and macro algae (Wenblad
2014). While it could be argued that other place-based approaches to aquaculture
siting and management might deliver similar benefits, statutory MSP brings certain
strategic advantages.

To start, MSP brings a more coordinated approach to overall sea use, promising
greater accountability and transparency of decision-making by including a wide
range of stakeholders from all sectors. It may also increase the effectiveness
of investments, reduce duplication of effort, and speed up decision-making
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(FAO 2013). For example, designating appropriate aquaculture areas and then
linking these areas to streamlined licensing procedures could render development
less uncertain and increase investor interest (EC 2013). As a strategic tool, MSP can
allocate space for aquaculture at sites with both favorable operational characteristics
(economic and ecological) as well as lower potential for conflict with other sectors
(FAO 2013). MSP would also allow for more structured consideration of
co-location of different uses, such as aquaculture taking place around offshore wind
structures, providing both a venue for the respective stakeholders to come together
and a greater incentive for investment. Hence, the most important reason for
aquaculture proponents to engage fully in MSP may be its emphasis on
cross-sectoral dialogue and conflict resolution. A well-run MSP process can turn
aquaculture from a relatively minor player in a very large debate to an equal
participant at the table, able to explain and advocate for its requirements for space at
sea (project 2013). The value of open, fair dialogue is particularly relevant in
interactions with the environmental sector, but also in considering other uses that
might restrict or conflict with aquaculture operations. A 2006 report that examined
the suitability of co-locating aquaculture and offshore wind farms in the UK found
that the offshore wind energy sector would resist such efforts and concluded that
MSP, accompanied by semi-commercial trials, was the only viable way forward for
this type of co-use in the UK (Mee 2006).

6.3 Decision Support Systems for MSP
and Aquaculture Siting

The EU MSP Directive stipulates that maritime spatial plans should be based on
reliable data and encourages Member States to share information and make use of
existing instruments and tools for data collection (EPC 2014a); (Article 19). Given
the spatial context of MSP, applications to scale economic, environmental, and
social dimensions geographically are in high demand (Kapetsky et al. 2013). Spatial
data are commonly handled in GIS that make it possible to translate many work-
flows into a connected series of process steps (Stelzenmiiller et al. 2012). Thus,
from a practical perspective, sustainable MSP requires not only spatially explicit
information about suitable areas but also a sound spatial assessment of the overlap
of human activities (Stelzenmiiller et al. 2012) and their combined impact on the
marine environment (Kelly et al. 2014). Even more challenging, the identification
of a suitable site for a given use does not just depend on physical, chemical
and biological factors, but also on political, economic, and social criteria (Wever
et al. 2015).

As aresult of these challenges, flexible Decision Support Systems (DSS) that are
able to consider complex interactions in a unique analytical framework are critical.
DSS can be distinguished based on their relative focus on data, models, knowledge,
or communication (Power 2003). Current DSS can range from simple spreadsheet
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models to complex software packages (Bagstad et al. 2013). One example of a DSS
for use in MSP is MIMES (Multi-scale Integrated Models of Ecosystem Services),
which uses GIS data to simulate ecosystem components under different scenarios
defined by stakeholder input. It features a suite of models to support MSP
decision making (www.afordablefutures.com/services/mimes). Further, the MMC
(Multipurpose Marine Cadastre) is an integrated, online marine information system
for viewing and accessing authoritative legal, physical, ecological, and cultural
information in a common GIS framework (www.marinecadastre.gov). Another
example is MaRS (Marine Resource System), which is a GIS-based DSS designed
to enhance marine resource analysis and ultimately identify areas with potential for
development in UK waters by The Crown Estate (www.thecrownestate.co.uk/mars-
portal-notice). It assists in identifying areas of opportunity and constraint, by
identifying how different activities would interact in a particular area and providing
statistics showing the value of the area to a competing industry.

6.3.1 The Importance of Spatial Data
in the Planning Process

In general, GIS-based data and robust spatial analyses help collate and harmonize
data for use at different stages of the planning process (Jay and Gee 2014;
Shucksmith et al. 2014), including scoping, development, and evaluation of plan-
ning options (Stelzenmiiller et al. 2010, 2013a). The use of GIS to support aqua-
culture development and planning has a long tradition (Kapetsky et al. 1990) and
the identification of suitable sites for aquaculture has been among the most frequent
applications of GIS (Fisher and Rahel 2004). In recent years, the use and relevance
of spatial data in supporting informed decision making in MSP has been increas-
ingly demonstrated (Caldow et al. 2015). For instance, the development of GIS data
layers to inform MSP includes: the mapping of sensitivity of seabirds to offshore
wind farms (Bradbury et al. 2014); the assessment of potential whale interactions
with shipping (Petruny et al. 2014); the mapping of offshore (Campbell et al. 2014)
and inshore (Breen et al. 2015) fishing activity; or the mapping of ethnographic
information (Sullivan et al. 2015). Decision makers and planners are most likely to
require spatial data layers at the development stage of a MSP process, enabling
them to explore the data, and develop and evaluate planning scenarios
(Stelzenmiiller et al. 2012).

6.3.2 DSS for Aquaculture Siting

The combination of DSS into one GIS-based system that can support sustainable
aquaculture development has been identified as an important future need (Ferreira
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et al. 2012; Filgueira et al. 2014). Suitability modeling refers to the spatial overlay
of geo-data layers to identify suitable aquaculture sites by identifying, for instance,
favorable environmental factors or constraints. Such studies can determine the
suitability for aquaculture development at various intensities (Longdill et al. 2008)
or can distinguish suitability by type of aquaculture cage (Falconer et al. 2013).

GIS-based suitability modeling is one of the most frequent DSS applications
used to evaluate potential aquaculture sites. The first applications of these tech-
niques date back to 1985 when the siting of aquaculture and inland fisheries using
GIS and remote sensing was conducted by the FAO. Until the mid-1990s, most
studies continued to target data-rich, small-scale environments (Gifford et al. 2001).
Early studies looked primarily at coastal or land-based aquaculture related to
oysters (shellfish) and shrimps and by using simple siting models (Fisher and Rahel
2004). The main drawback of applying suitability models in offshore environments
was a lack of fine-scale data with the necessary temporal and spatial resolution
(Fisher and Rahel 2004). Since GIS applications and models have become signif-
icantly more complex, and the resolution and quality of data has greatly improved
(Fisher and Rahel 2004), one might expect the focus to have shifted to offshore
areas. However, as yet, the majority of GIS-based site selection efforts are still
focused on shrimp aquaculture in coastal areas around Asia, while studies in off-
shore environments remain rare.

Once spatially resolved data are available, a GIS-based Multi-Criteria Evaluation
(GIS-MCE)—also referred to as area weighted rating (Malczewski 2006)—can be
used as a flexible and transparent DSS for potential aquaculture siting. Applications
of GIS-MCE in offshore areas were undertaken in a study by Perez et al. (2005) in
which suitable sites were modelled for offshore floating marine fish cage aqua-
culture in Tenerife, Canary Islands. The untapped potential of offshore mariculture
is addressed in a global assessment wherein all spatial analyses of suitability and
constraints were conducted with the help of GIS (Kapetsky et al. 2013).

Recently, the combination of GIS and dynamic models to identify suitable sites,
as done by Silva et al. (2011) for shellfish aquaculture, is becoming more popular.
Superimposed models such as FARM (Farm Aquaculture Resource Management;
www.farmscale.org) aim to support the siting process with detailed analyses of
production, socio-economic outputs, and environmental effects (Silva et al. 2011).
In Nunes et al. (2011), the implementation of an ecosystem approach to aquaculture
has been advanced by testing various complementary analytical tools. The tools
were used to assess multiple aspects of blue mussel cultivation in Killary Harbour,
Ireland at different spatial scales (farm- to system-level), times (seasonal to annual
to long-term analyses) and levels of complexity (from simple to complex process-
based modelling). The selected tools included a system-scale, process-based eco-
logical model (EcoWin 2000; www.ecowin2000.com), a local-scale carrying
capacity and environmental effects model (FARM), and a management level
eutrophication screening model (ASSETS). Further examples of combining dif-
ferent ecosystem tools for decision support for aquaculture is presented in Filgueira
et al. (2014).
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In terms of advanced, web-based interactive DSSs, AkvaVis includes site
selection, carrying capacity, and management monitoring modules (Ervik et al.
2008, 2011). With suitable adaptations, it appears to be a promising tool for
estimating offshore aquaculture potential at national levels and for managing its
subsequent development. Filgueira et al. (2014) proposed dynamic, fully-spatial
modeling, scenario-building, and optimization tools such as PEST (model-
independent Parameter ESTimation, www.pesthomepage.org) as an ideal combi-
nation of tools for effective MSP. In the context of MSP decision support, other
tools such as MaxEnt (Maximum Entropy modelling) or MARXAN have been
utilized in combination with GIS to identify trends, opportunities and concerns
related to sustainable management and farm locations (http://dspace.stir.ac.uk/
handle/1893/19465) or to identify fisheries areas (Schmiedel and Lamp 2012).
ARIES (ARtificial Intelligence for Ecosystem Services) assists in mapping service
flows of the ecosystem such as aquaculture benefits (ariesonline.org/docs/
ARIESModelingGuidel.0.pdf) and InVEST (Integrated Valuation of Ecosystem
Services and Tradeoffs) enables the user to evaluate how aquaculture can affect
production and value of marine ecosystem services (www.naturalcapitalproject.org/
models/models.html).

As described in Ferreira et al. (2012), the data requirements for DSS expand with
the scale of the aquaculture operation. Thus, it will be challenging to use
aquaculture-specific DSS in a broader spatial planning system, such as MSP or
ICZM, where a large ecosystem scale is required. Indeed, as might be expected, and
as articulated by Gifford et al. (2001), there are no “ideal” sites for aquaculture and
compromise will always be required. Fortunately, a range of GIS-based DSS exist
already to help to find this compromise and to support MSP using transparent data
management and advanced visualization.

Several tools have been developed to help assess conflicts and synergies between
fisheries, aquaculture, and other marine sectors and to advance practical applica-
tions based on that knowledge (Stelzenmiiller et al. 2013b). Given the multiple-use
context of many sea areas, the identification of suitable sites for aquaculture will
depend on location-specific understanding of conflicts and synergies between
various proposed types of sea use. While conflicts should be minimized, the dis-
covery of synergies can help identify areas suitable for co-location (Stelzenmiiller
et al. 2013b; Griffin et al. 2015).

6.4 The Co-location Scenario: Combining Offshore
Wind Energy and Aquaculture

Both English and German marine plans encourage the combination of aquaculture
with other uses. In the UK, a strong national policy statement calls for consideration
of the “significant opportunities for co-existence of aquaculture and other marine
activities” (Government 2011, 3.9.6). The UK’s East Inshore and Offshore Marine
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Plans also stipulate that co-location opportunities should be maximized wherever
possible, and that “proposals for using marine areas should demonstrate the extent
to which they will co-exist with other existing or authorized activities and how this
will be achieved” (Government 2014, p. 106). Identifying opportunities for, and the
technical feasibility of, co-location becomes all the more important for supporting
decision-making (Christie et al. 2014; Hooper and Austen 2014).

6.4.1 Co-location as an Opportunity for Spatial Planning?

The co-location of offshore infrastructure and aquaculture has been a particular
focus of research (Buck et al. 2004; Lacroix and Pioch 2011; Wever et al. 2015),
with “infrastructure” typically referring to offshore wind energy facilities. During
the past ten years there has been growing interest among policy makers, scientists,
the aquaculture industry, and other stakeholders in implementing pilot studies to
demonstrate the feasibility of such co-location. In the southern North Sea and
German Bight, the potential co-location of offshore wind and aquaculture has
gained momentum due to the allocation of large areas for offshore wind, including
approximately 35% of the German EEZ of the North Sea, and the resulting loss of
space for other sectors, such as fisheries (Stelzenmiiller et al. 2014).

Based on an extensive stakeholder consultation process, Wever et al. (2015)
identified future research needs to support implementation of the co-location con-
cept. One of these needs was the development of site-selection criteria that include
environmental, economic, socioeconomic, and technological parameters. A recent
study by Benassai et al. (2014) used a GIS-MCE DSS to evaluate suitable areas for
the co-location of offshore wind and aquaculture at a large spatial scale, using only
environmental criteria. At a much finer resolution, Gimpel et al. (2015) assessed the
potential for coupling offshore aquaculture and wind farms in the German EEZ of
the North Sea based on environmental and infrastructure criteria. In the following
section we provide a brief summary of the methods, key criteria, and results of this
case study.

6.4.2 Case Study in the German Bight

In order to evaluate different spatial co-location scenarios for the coupling of off-
shore Integrated Multi-Trophic Aquaculture (IMTA) systems and wind farms,
possible aquaculture candidates (seaweed, bivalves, fish and crustaceans) were
identified. Those have been selected accounting for their native occurrence in the
German North Sea, their resistance to hydrodynamic conditions in offshore envi-
ronments as well as their economic potential for the EU market. The study area
comprised the German EEZ of the North Sea with a surface area of 28.539 km?
(Fig. 6.1). A vector grid was superimposed to the study area with a grid size



6 Aquaculture Site-Selection and Marine Spatial Planning ... 139

5°0'E 6°0'E 7T°0'E

55°0'N
55°0'N

- 50m “03g5° T

30 - 40m

20 - 30m

10 - 20m

0-10m
I:l OWF licensed
] owF atwork
’:l OWF licensing procedure
I:l OWF under construction
S Nature 2000 sites
Garman EEZ

54°0'N
54°0°'N

5°0E 6°0'E 7°0E

Fig. 6.1 Map of Offshore Wind Farm (OWF) areas in the German EEZ of the North Sea,
numbered, coloured per depth level and framed per status. Shaded districts show the Nature 2000
areas. Note that depth, the OWF areas (effective from December 2013; BSH) and the Nature 2000
sites constituted a physical constraint applied, limiting suitable sites for co-use with aquaculture.
OWF 18, 80 and 95 have not been considered during this study, as they appear within the 12 nm
zone or in Nature 2000 sites (redrawn from Gimpel et al. 2015)

resolution of 9.26 km*>. A GIS-MCE technique was applied to index suitable
co-sites. In order to provide all criteria needed (Fig. 6.2), hydrographic data were
extracted, analysed and interpolated to derive depth stratified mean values per
quarter of the year. Further all data were standardised using fuzzy membership
functions with control points to guarantee comparability among factors, whereby
the choice of function and control points was based on expert knowledge and
literature research. With the pairwise comparison method of the Analytical
Hierarchy Process (AHP) all factors were weighted by priority for all grid cells.
Also a range of weighting designs was modelled using an Ordered Weighted
Average (OWA) approach to address the uncertainty in prediction results. If one
grid cell appeared to be unsuitable during OWA weighting, it had been excluded
from further assessments. The final weighting of the factors was based on expert
judgement and focused on the optimal growth under farmed conditions. Using this
weighting scheme the GIS-MCE resulted in a series of geo-referenced aquaculture
suitability layers comprising the whole German EEZ of the North Sea. In a next
step, an offshore co-location suitability index was developed by accounting for
overlaps between the aquaculture sites and referenced offshore wind farms provided
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Fig. 6.2 Overall methodological approach used to index potential co-use locations of offshore
wind farms in combination with offshore aquaculture, redrawn from (Ouma and Tateishi 2014)
(taken from Gimpel et al. 2015)

by the Federal Maritime and Hydrographic Agency (BSH), excluding the wind
farms located in existing nature conservation sites or within the German territorial
waters (18, 56, 82 and 95). Further, the co-location sites were examined concerning
their suitability for IMTA techniques. The overall methodological approach is
shown in Fig. 6.2.
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While the conditions for fish proved to be highly suitable during summer, the
mussels and algae revealed peak suitability in spring. Still, when examining suitable
sites at 10-20 m depth for spring, haddock (Melanogrammus aeglefinus) showed
highest suitability of all aquaculture candidates closest to the coast (Fig. 6.3).
Though fish can be cultured offshore the whole year around, but they require a high
degree of care (feeding, clearing of cages etc.). Therefore, due to logistic constraints
a cultivation approach closer to the coast is preferred. In contrast, oarweed
(Laminaria digitata) presented the highest suitability scores at wind farm areas
located further offshore. When seaweed is seeded elaborately on the rope and
transferred at sea at a juvenile stage, holdfasts will not be dislodged and cauloids
will not break leading to a resistance to harsh conditions. As they require a very low
level of maintenance, a cultivation approach offshore is forthcoming. In general, if
seaweed is part of an IMTA approach and also a candidate to be sold on the EU
market, it has to be harvested latest by the end of spring. If the seaweed is cultivated
within a bioremediation concept and is only used to extract nutrients from the water
column, it can be on-site year around.

Results showed several wind farms were de facto suitable sites for IMTA sys-
tems combining fish species, bivalves and seaweeds. As Laminaria species (L.
digitata, Laminaria hyperborea) cultured near fish farms bring along better growth
rates, a candidate set of Oarweed (L. digitata), Pacific oyster (Crassostrea gigas)
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Fig. 6.3 Map of suitable co-location sites in the German EEZ of the North Sea, colored per
aquaculture candidate featuring the highest suitability per wind farm area. Results are shown for
spring at 10-20 m depth with Nature 2000 areas indicated as shaded areas
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Fig. 6.4 Co-location sites for aquaculture candidates, suitable for possible IMTAs close to the
German coast (North Sea) are shown as an example. Results presented depict the conditions given
at 10-20 m depth during spring time. The size of the pies reflects the height of the relative
suitability scores

and M. aeglefinus could be of interest regarding IMTA, especially if cultured in
spring near the coast (Fig. 6.4). If it is about an IMTA candidate set which could be
on site year around, Atlantic cod (Gadus morhua), blue mussel (Mytilus edulis) and
sea beech (Delessaria sanguine) can be mentioned. Though, the here presented
suitability for co-locations does not account for economic viability analyses for the
respective candidates. Nevertheless, the case study example illustrated how com-
peting needs might be balanced by strategic planning for the needs of sectors,
offshore wind energy and offshore IMTA. This might offer guidance to stakeholders
and assist decision-makers in determining the most suitable sites for pilot projects
using IMTA techniques.

6.5 Conclusions and Future Needs

As highlighted by the here presented examples, some form of strategic spatial
planning will be critical in advancing sustainable offshore aquaculture. Olofsson
and Andersson (2014) describe a successful planning process conducted in the
Baltic Sea Region to site sustainable aquaculture farms for finfish and mussels.
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GIS tools were used to evaluate geographical data and identify suitable areas, fish
carrying capacity was calculated, mussel settling in the selected areas was esti-
mated, and a public consultation process was carried out in both regions. Hence,
such a spatial planning process will be crucial for aquaculture development as it
lowers the threshold for new entrepreneurs, minimizes the risk of appeals, makes
the business more environmentally safe, and lowers the risk of social conflicts.

But, increasingly, aquaculture siting will be conducted in a broader, multiple-use
context where tradeoffs will be more complex. As stated by Lovatelli et al. (2014),
“meeting the future demand for food from aquaculture will largely depend on the
availability of space [and] ‘MSP’ is needed to ensure [that] allocation of space.”
Although a variety of GIS-based tools and DSS are currently available to assist in the
planning process, the allocation of space in the ocean remains a complex, contentious
process unlikely to be fully resolved by even the most sophisticated mathematical
calculations. Successful MSP, including the co-location of compatible activities,
relies as much on the willingness of relevant stakeholders to become involved as it
does on tools and techniques for identifying optimum areas (Gopnik 2015). The
integration of relevant actors is a “complex and controversial issue” (Buck et al.
2008) which depends on a multitude of factors, including inclusiveness, transparency
of the process and of decision-making, timing, credibility of the data and science, and
impartial mediation.

Despite these caveats, GIS-based DSS will continue to play an important role in
planning and spatial decision-making because of their ability to evaluate the results
of many different spatial scenarios. Ideally, this should include assessments of the
economic and socio-cultural impacts of different siting decisions, which can be the
main sources of conflict and are too often overlooked (ICES 2013). Socio-economic
data integrate publicly-held values into the decision-making processes. Primary data
on socio-cultural values—such as the importance people give to cultural identity
and the degree to which that is related to the ecosystem (de Groot et al. 2010)—are
usually not available. Surveys on secondary data as well as their spatial analysis still
remain complex tasks. In general, the spatial aggregation of socio-economic data in
a GIS framework is difficult, involving close collaboration with the respective
sectors (Ban et al. 2013). Most progress can be found with regard to the mapping of
fleet-specific fisheries activities due to technical advances in combining Vessel
Monitoring System (VMS) and logbook information (Bastardie et al. 2010; Lee
et al. 2010; Hintzen et al. 2012). Finally, GIS-based DSS should be flexible enough
to respond to shifting circumstances, such as changes in environmental conditions,
environmental targets, growth expectations in the aquaculture sector, or policy
environments. Like all analytical tools, GIS-based DSS are only as good as the
quality and thoroughness of the data they are based on, and their strengths and
limitations should be clearly explained to stakeholders during the planning process.
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