1,003 research outputs found

    The influence of caffeine on energy content of sugar-sweetened beverages : the caffeine–calorie effect

    Get PDF
    Background/Objectives: Caffeine is a mildly addictive psychoactive chemical and controversial additive to sugar-sweetened beverages (SSBs). The objective of this study is to assess if removal of caffeine from SSBs allows co-removal of sucrose (energy) without affecting flavour of SSBs, and if removal of caffeine could potentially affect population weight gain. Subjects/Methods: The research comprised of three studies; study 1 used three-alternate forced choice and paired comparison tests to establish detection thresholds for caffeine in water and sucrose solution (subjects, n ¼ 63), and to determine if caffeine suppressed sweetness. Study 2 (subjects, n ¼ 30) examined the proportion of sucrose that could be co-removed with caffeine from SSBs without affecting the flavour of the SSBs. Study 3 applied validated coefficients to estimate the impact on the weight of the United States population if there was no caffeine in SSBs. Results: Detection threshold for caffeine in water was higher (1.09±0.08 mM) than the detection threshold for caffeine in sucrose solution (0.49 ± 0.04 mM), and a paired comparison test revealed caffeine significantly reduced the sweetness of sucrose (Po0.001). Removing caffeine from SSBs allowed co-removal of 10.3% sucrose without affecting flavour of the SSBs, equating to 116 kJ per 500 ml serving. The effect of this on body weight in adults and children would be 0.600 and 0.142 kg, which are equivalent to 2.08 and 1.10 years of observed existing trends in weight gain, respectively. Conclusion: These data suggest the extra energy in SSBs as a result of caffeine's effect on sweetness may be associated with adult and child weight gain

    Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

    Get PDF
    A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Due to the impracticalities of conducting host-microbe systems-based studies in HIV infected patients, we have evaluated the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. We present the first description of the rhesus macaque oral microbiota and show that a mixture of human commensal bacteria and "macaque versions" of human commensals colonize the tongue dorsum and dental plaque. Our findings indicate that SIV infection results in chronic activation of antiviral and inflammatory responses in the tongue mucosa that may collectively lead to repression of epithelial development and impact the microbiome. In addition, we show that dysbiosis of the lingual microbiome in SIV infection is characterized by outgrowth of Gemella morbillorum that may result from impaired macrophage function. Finally, we provide evidence that the increased capacity of opportunistic pathogens (e.g. E. coli) to colonize the microbiome is associated with reduced production of antimicrobial peptides

    Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report

    Get PDF
    A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis

    Observed communication semantics for classical processes

    Get PDF
    Classical Linear Logic (CLL) has long inspired readings of its proofs as communicating processes. Wadler's CP calculus is one of these readings. Wadler gave CP an operational semantics by selecting a subset of the cut-elimination rules of CLL to use as reduction rules. This semantics has an appealing close connection to the logic, but does not resolve the status of the other cut-elimination rules, and does not admit an obvious notion of observational equivalence. We propose a new operational semantics for CP based on the idea of observing communication, and use this semantics to define an intuitively reasonable notion of observational equivalence. To reason about observational equivalence, we use the standard relational denotational semantics of CLL. We show that this denotational semantics is adequate for our operational semantics. This allows us to deduce that, for instance, all the cut-elimination rules of CLL are observational equivalences

    Prostate Cancer Radiation Therapy Recommendations in Response to COVID-19

    Get PDF
    Purpose: During a global pandemic, the benefit of routine visits and treatment of patients with cancer must be weighed against the risks to patients, staff, and society. Prostate cancer is one of the most common cancers radiation oncology departments treat, and efficient resource utilization is essential in the setting of a pandemic. Herein, we aim to establish recommendations and a framework by which to evaluate prostate radiation therapy management decisions. Methods and Materials: Radiation oncologists from the United States and the United Kingdom rapidly conducted a systematic review and agreed upon recommendations to safely manage patients with prostate cancer during the COVID-19 pandemic. A RADS framework was created: remote visits, and avoidance, deferment, and shortening of radiation therapy was applied to determine appropriate approaches. Results: Recommendations were provided by the National Comprehensive Cancer Network risk group regarding clinical node-positive, postprostatectomy, oligometastatic, and low-volume M1 disease. Across all prostate cancer stages, telemedicine consultations and return visits were recommended when resources/staff available. Delays in consultations and return visits of between 1 and 6 months were deemed safe based on stage of disease. Treatment can be avoided or delayed until safe for very low, low, and favorable intermediate-risk disease. Unfavorable intermediate-risk, high-risk, clinical node-positive, recurrence postsurgery, oligometastatic, and low-volume M1 disease can receive neoadjuvant hormone therapy for 4 to 6 months as necessary. Ultrahypofractionation is preferred for localized, oligometastatic, and low-volume M1, and moderate hypofractionation is preferred for postprostatectomy and clinical node positive disease. Salvage is preferred to adjuvant radiation. Conclusions: Resources can be reduced for all identified stages of prostate cancer. The RADS (remote visits, and avoidance, deferment, and shortening of radiation therapy) framework can be applied to other disease sites to help with decision making in a global pandemic

    Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroids are small molecule hormones derived from cholesterol. Steroids affect many tissues, including the brain. In the zebra finch, estrogenic steroids are particularly interesting because they masculinize the neural circuit that controls singing and their synthesis in the brain is modulated by experience. Here, we analyzed the zebra finch genome assembly to assess the content, conservation, and organization of genes that code for components of the estrogen-synthetic pathway and steroid nuclear receptors. Based on these analyses, we also investigated neural expression of a cholesterol transport protein gene in the context of song neurobiology.</p> <p>Results</p> <p>We present sequence-based analysis of twenty steroid-related genes using the genome assembly and other resources. Generally, zebra finch genes showed high homology to genes in other species. The diversity of steroidogenic enzymes and receptors may be lower in songbirds than in mammals; we were unable to identify all known mammalian isoforms of the 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase families in the zebra finch genome assembly, and not all splice sites described in mammals were identified in the corresponding zebra finch genes. We did identify two factors, Nobox and NR1H2-RXR, that may be important for coordinated transcription of multiple steroid-related genes. We found very little qualitative overlap in predicted transcription factor binding sites in the genes for two cholesterol transport proteins, the 18 kDa cholesterol transport protein (TSPO) and steroidogenic acute regulatory protein (StAR). We therefore performed in situ hybridization for TSPO and found that its mRNA was not always detected in brain regions where StAR and steroidogenic enzymes were previously shown to be expressed. Also, transcription of TSPO, but not StAR, may be regulated by the experience of hearing song.</p> <p>Conclusions</p> <p>The genes required for estradiol synthesis and action are represented in the zebra finch genome assembly, though the complement of steroidogenic genes may be smaller in birds than in mammals. Coordinated transcription of multiple steroidogenic genes is possible, but results were inconsistent with the hypothesis that StAR and TSPO mRNAs are co-regulated. Integration of genomic and neuroanatomical analyses will continue to provide insights into the evolution and function of steroidogenesis in the songbird brain.</p

    The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus flavus

    Get PDF
    The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+μ+μ−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0μ+μ−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)μ+μ−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+μ+μ−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0μ+μ−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕμ+μ−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
    • …
    corecore