18 research outputs found
Electrons in an annealed environment: A special case of the interacting electron problem
The problem of noninteracting electrons in the presence of annealed magnetic
disorder, in addition to nonmagnetic quenched disorder, is considered. It is
shown that the proper physical interpretation of this model is one of electrons
interacting via a potential that is long-ranged in time, and that its technical
analysis by means of renormalization group techniques must also be done in
analogy to the interacting problem. As a result, and contrary to previous
claims, the model does not simply describe a metal-insulator transition in
() dimensions. Rather, it describes a transition
to a ferromagnetic state that, as a function of the disorder, precedes the
metal-insulator transition close to . In , a transition from a
paramagnetic metal to a paramagnetic insulator is possible.Comment: 13 pp., LaTeX, 2 eps figs; final version as publishe
Electronic structure of a Mn12 molecular magnet: Theory and experiment
金沢大学大学院自然科学研究科物質情報解析We used site-selective and element-specific resonant inelastic x-ray scattering (RIXS) to study the electronic structure and the electron interaction effects in the molecular magnet [Mn12 O12 (C H3 COO)16 (H2 O)4] 2C H3 COOH 4 H2 O, and compared the experimental data with the results of local spin density approximation +U electron structure calculations which include the on-site Coulomb interactions. We found a good agreement between theory and experiment for the Coulomb repulsion parameter U=4 eV. In particular, the p-d band separation of 1.8 eV has been found from the RIXS spectra, which is in accordance with the calculations. Similarly, the positions of the peaks in the XPS spectra agree with the calculated densities of p and d states. Using the results of the electronic structure calculations, we determined the intramolecular exchange parameters, and used them for diagonalization of the Mn12 spin Hamiltonian. The calculated exchanges gave the correct ground state with the total spin S=10. © 2007 The American Physical Society
Studies of Hadronic Event Structure in e+e- Annihilation from 30 GeV to 209 GeV with the L3 Detector
In this Report, QCD results obtained from a study of hadronic event structure
in high energy e^+e^- interactions with the L3 detector are presented. The
operation of the LEP collider at many different collision energies from 91 GeV
to 209 GeV offers a unique opportunity to test QCD by measuring the energy
dependence of different observables. The main results concern the measurement
of the strong coupling constant, \alpha_s, from hadronic event shapes and the
study of effects of soft gluon coherence through charged particle multiplicity
and momentum distributions.Comment: To appear in Physics Report
Electronic structure of a Mn-12 molecular magnet: Theory and experiment
Contains fulltext :
34826.pdf (publisher's version ) (Open Access