650 research outputs found

    Maternal obesity is associated with the formation of small dense LDL and hypoadiponectinemia in the third trimester

    Get PDF
    Context: Maternal obesity is associated with high plasma triglyceride, poor vascular function, and an increased risk for pregnancy complications. In normal-weight pregnant women, higher triglyceride is associated with increased small, dense low-density lipoprotein (LDL). Hypothesis: In obese pregnancy, increased plasma triglyceride concentrations result in triglyceride enrichment of very low-density lipoprotein-1 particles and formation of small dense LDL via lipoprotein lipase. Design: Women (n = 55) of body mass index of 18–46 kg/m2 were sampled longitudinally at 12, 26, and 35 weeks' gestation and 4 months postnatally. Setting: Women were recruited at hospital antenatal appointments, and study visits were in a clinical research suite. Outcome Measures: Plasma concentrations of lipids, triglyceride-rich lipoproteins, lipoprotein lipase mass, estradiol, steroid hormone binding globulin, insulin, glucose, leptin, and adiponectin were determined. Results: Obese women commenced pregnancy with higher plasma triglyceride, reached the same maximum, and then returned to higher postnatal levels than normal-weight women. Estradiol response to pregnancy (trimester 1–3 incremental area under the curve) was positively associated with plasma triglyceride response (r2 adjusted 25%, P < .001). In the third trimester, the proportion of small, dense LDL was 2-fold higher in obese women than normal-weight women [mean (SD) 40.7 (18.8) vs 21.9 (10.9)%, P = .014], and 35% of obese, 14% of overweight, and none of the normal-weight women displayed an atherogenic LDL subfraction phenotype. The small, dense LDL mass response to pregnancy was inversely associated with adiponectin response (17%, P = .013). Conclusions: Maternal obesity is associated with an atherogenic LDL subfraction phenotype and may provide a mechanistic link to poor vascular function and adverse pregnancy outcome

    A Multi-Phase Transport model for nuclear collisions at RHIC

    Get PDF
    To study heavy ion collisions at energies available from the Relativistic Heavy Ion Collider, we have developed a multi-phase transport model that includes both initial partonic and final hadronic interactions. Specifically, the parton cascade model ZPC, which uses as input the parton distribution from the HIJING model, is extended to include the quark-gluon to hadronic matter transition and also final-state hadronic interactions based on the ART model. Predictions of the model for central Au on Au collisions at RHIC are reported.Comment: 7 pages, 4 figure

    Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus

    Get PDF
    This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pone.0144846All dLGN cell co-ordinates, V1 injection sites, dLGN boundary coordinates, experimental protocols and analysis scripts are available for download from figshare at https://figshare.com/s/36c6d937b1844eec80a1.The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4?6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN?an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN.Funding was provided by a Wellcome Trust grant jointly awarded to IDT and SJE (083205, www.wellcome.ac.uk), and by MRC PhD Studentships awarded to MNL and ACH (http://www.mrc.ac.uk/)

    Marginal Deformations with U(1)^3 Global Symmetry

    Full text link
    We generate new 11-dimensional supergravity solutions from deformations based on U(1)^3 symmetries. The initial geometries are of the form AdS_4 x Y_7, where Y_7 is a 7-dimensional Sasaki-Einstein space. We consider a general family of cohomogeneity one Sasaki-Einstein spaces, as well as the recently-constructed cohomogeneity three L^{p,q,r,s} spaces. For certain cases, such as when the Sasaki-Einstein space is S^7, Q^{1,1,1} or M^{1,1,1}, the deformed gravity solutions correspond to a marginal deformation of a known dual gauge theory.Comment: 28pp; Refs. added and to appear in JHE

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore