2,088 research outputs found

    Aurora and the lower ionosphere in relation to satellite observations of particle precipitation

    Get PDF
    Aurora and lower ionosphere in relation to satellite observations of electron precipitatio

    Downward ion acceleration at auroral latitudes: cause of parallel electric field

    No full text
    International audienceObservations with the Freja satellite at about 1700 km altitude of downward accelerated ions in the keV and sub-keV energy range are described and analysed. The observations show the following: (1) Processes involving velocity dispersion are not important; (2) Ion pitch-angle distributions are mostly somewhat field aligned but not far from isotropic, so the ions are effectively spread in pitch-angle; (3) As all ion species, H +, O +, and He +, are found to be accelerated to the same energy, the only possible known acceleration mechanism is a potential difference along the magnetic field lines; (4) No significant Birkeland current features are associated with the ion precipitation; (5) Precipitation of energetic electrons from the plasma sheet is always present when the downward accelerated ions are observed; (6) Ion precipitation is generally not seen in regions with primary auroral Birkeland currents associated with electron inverted-V distributions; (7) Precipitated ions are mostly observed at low and medium disturbance levels, but they are also found in strongly disturbed conditions; (8) Downward accelerated ions occur fairly frequently at auroral latitudes near Freja apogee altitudes and are seen at all local times. The present investigation is limited to the nightside. The above observational results are found to be consistent with the physical mechanism for producing a downward-pointing parallel electric field proposed by Hultqvist (1971). That mechanism is basically one of an ambipolar potential difference set up by the energetic electrons from the plasma sheet

    Insulator materials for interface passivation of Cu(In,Ga)Se2 thin films

    Get PDF
    In this work, Metal-Insulator-Semiconductor (MIS) structures were fabricated in order to study different types of insulators, namely, aluminum oxide (Al2O3), silicon nitride (Si3Nx) and silicon oxide (SiOx) to be used as passivation layers in Cu(In,Ga)Se2 (CIGS) thin film solar cells. The investigated stacks consisted of SLG/Mo/CIGS/insulator/Al. Raman scattering and Photoluminescence measurements were done to verify the insulator deposition influence on the CIGS surface. In order to study the electrical properties of the CIGS-insulator interface, capacitance vs. conductance and voltage (C-G-V) measurements were done to estimate the number and polarity of fixed insulator charges (Qf). The density of interface defects (Dit) was estimated from capacitance vs. conductance and frequency (C-G-f) measurements. This study evidences that the deposition of the insulators at high temperatures (300 ÂșC) and the use of sputtering technique cause surface modification on the CIGS surface. We found that, by varying the SiOx deposition parameters, it is possible to have opposite charges inside the insulator, which would allow its use in different device architectures. The material with lower Dit values was Al2O3 when deposited by sputtering.publishe

    NCF1 gene and pseudogene pattern: association with parasitic infection and autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil cytosolic factor 1, p47<sup>phox </sup>(NCF1) is a component of the leukocyte NADPH oxidase complex mediating formation of reactive oxygen intermediates (ROI) which play an important role in host defense and autoimmunity. An individual genomic pattern of <it>ncf1 </it>and its two types of pseudogenes (reflected by the ΔGT/GTGT ratio) may influence the individual capacity to produce ROI.</p> <p>Methods</p> <p>NCF1ΔGT/GTGT ratios were correlated with clinical parameters and ROI production during <it>Plasmodium falciparum </it>malaria and with susceptibility to the autoimmune disease multiple sclerosis (MS).</p> <p>Results</p> <p>Among Gabonese children with severe malaria, ROI production from peripheral blood tended to be higher in individuals with a ΔGT/GTGT ratio ≀ 1:1. ΔGT/GTGT ratios were not associated with susceptibility to MS, but to age-of-onset among MS patients.</p> <p>Conclusion</p> <p>The genomic pattern of <it>NCF1 </it>and its pseudogenes might influence ROI production but only marginally influence susceptibility to and outcome of malaria and MS.</p

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube

    Get PDF
    Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies ≳30\gtrsim30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, ΜΌ\nu_\mu-induced tracks from the Northern hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50±0.09-2.50\pm0.09 and a flux at 100 TeV of (6.7−1.2+1.1)⋅10−18 GeV−1s−1sr−1cm−2\left(6.7_{-1.2}^{+1.1}\right)\cdot10^{-18}\,\mathrm{GeV}^{-1}\mathrm{s}^{-1}\mathrm{sr}^{-1}\mathrm{cm}^{-2}. Under the same assumptions, an unbroken power law with index −2-2 is disfavored with a significance of 3.8 σ\sigma (p=0.0066%p=0.0066\%) with respect to the best fit. This significance is reduced to 2.1 σ\sigma (p=1.7%p=1.7\%) if instead we compare the best fit to a spectrum with index −2-2 that has an exponential cut-off at high energies. Allowing the electron neutrino flux to deviate from the other two flavors, we find a Îœe\nu_e fraction of 0.18±0.110.18\pm0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay dominated sources, is rejected with a significance of 3.6 σ\sigma (p=0.014%p=0.014\%).Comment: 16 pages, 10 figures; accepted for publication in The Astrophysical Journal; updated one referenc

    Study of Leading Hadrons in Gluon and Quark Fragmentation

    Get PDF
    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.Comment: 19 pages, 6 figures, Accepted by Phys. Lett.
    • 

    corecore