103 research outputs found
Absolute dimensions of eclipsing binaries. XVII. A metal-weak F-type system, perhaps with preference for Y = 0.23-0.24
V1130 Tau is a bright (m_V = 6.56), nearby (71 +/- 2 pc) detached system with
a circular orbit (P = 0.80d). The components are deformed with filling factors
above 0.9. Their masses and radii have been established to 0.6-0.7%. We derive
a [Fe/H] abundance of -0.25 +/- 0.10. The measured rotational velocities, 92.4
+/- 1.1 (primary) and 104.7 +/- 2.7 (secondary) km/s, are in fair agreement
with synchronization. The larger 1.39 Msun secondary component has evolved to
the middle of the main-sequence band and is slightly cooler than the 1.31 Msun
primary. Yonsai-Yale, BaSTI, and Granada evolutionary models for the observed
metal abundance and a 'normal' He content of Y = 0.25-0.26, marginally
reproduce the components at ages between 1.8 and 2.1 Gyr. All such models are,
however, systematically about 200 K hotter than observed and predict ages for
the more massive component, which are systematically higher than for the less
massive component. These trends can not be removed by adjusting the amount of
core overshoot or envelope convection level, or by including rotation in the
model calculations. They may be due to proximity effects in V1130 Tau, but on
the other hand, we find excellent agreement for 2.5-2.8 Gyr Granada models with
a slightly lower Y of 0.23-0.24. V1130 Tau is a valuable addition to the very
few well-studied 1-2 Msun binaries with component(s) in the upper half of the
main-sequence band, or beyond. The stars are not evolved enough to provide new
information on the dependence of core overshoot on mass (and abundance), but
might - together with a larger sample of well-detached systems - be useful for
further tuning of the helium enrichment law.Comment: Accepted for publication in Astronomy & Astrophysic
Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device
We report the first demonstrations of both quadrature squeezed vacuum and
photon number difference squeezing generated in an integrated nanophotonic
device. Squeezed light is generated via strongly driven spontaneous four-wave
mixing below threshold in silicon nitride microring resonators. The generated
light is characterized with both homodyne detection and direct measurements of
photon statistics using photon number-resolving transition edge sensors. We
measure ~dB of broadband quadrature squeezing (~dB inferred
on-chip) and ~dB of photon number difference squeezing (~dB
inferred on-chip). Nearly-single temporal mode operation is achieved, with raw
unheralded second-order correlations as high as measured
(~when corrected for noise). Multi-photon events of over 10 photons
are directly detected with rates exceeding any previous quantum optical
demonstration using integrated nanophotonics. These results will have an
enabling impact on scaling continuous variable quantum technology.Comment: Significant improvements and updates to photon number squeezing
results and discussions, including results on single temporal mode operatio
The CORALIE survey for southern extra-solar planets. X. A Hot Jupiter orbiting HD73256
Recent radial-velocity measurements obtained with the CORALIE spectrograph on
the 1.2-m Euler Swiss telescope at La Silla unveil the presence of a new
Jovian-mass Hot Jupiter around HD 73256. The 1.85-M_Jup planet moves on an
extremely short-period (P=2.5486 d), quasi-circular orbit. The best Keplerian
orbital solution is presented together with an unsuccessful photometric
planetary-transit search performed with the SAT Danish telescope at La Silla.
Over the time span of the observations, the photometric follow-up of the
candidate has nevertheless revealed a P=14-d photometric periodicity
corresponding to the rotational period of the star. This variation as well as
the radial-velocity jitter around the Keplerian solution are shown to be
related to the fair activity level known for HD 73256.Comment: 7 pages, 7 figures. Accepted in A&
Four-colour photometry of eclipsing binaries. XL, uvby light curves for the B-type systems DW Carinae, BF Centauri, AC Velorum, and NSV 5783
Aims. In order to increase the limited number of B-stars with accurately known dimensions, and also the number of well studied eclipsing binaries in open clusters, we have undertaken observations and studies of four southern double-lined eclipsing B-type binaries; DWCar, BF Cen, ACVel, and NSV 5783.
Methods. Complete uvby light curves were observed between January 1982 and April 1991 at the Danish 0.5 m telescope at ESO La Silla, since 1985 known as the Strömgren Automatic Telescope (SAT). Standard indices for the systems and the comparison stars,as well as additional minima observations for ACVel, have been obtained later at SAT. For DWCar and ACVel, high-resolution spectra for definitive spectroscopic orbits have also been obtained; they are presented as part of the detailed analyses of these systems.
A few spectra of NSV 5783 are included in the present paper.
Results. For all four systems, the first modern accurate light curves have been established. DWCar is a detached system consisting of two nearly identical components. It is member of the young open cluster Cr228. A detailed analysis, based on the new light curves and 29 high-resolution spectra, is published separately. BFCen is semidetached and is member of NGC 3766. Modern spectra are
needed for a detailed study. ACVel is a detached system with at least one more star. A full analysis, based on the new light curves and 18 high-resolution spectra, is published separately. NSV 5783 is discovered to be an eclipsing binary consisting of two well-detached
components in an 11-day period eccentric (e = 0.18) orbit. Secondary eclipse is practically total. From the light curves and a few high-resolution spectra, accurate photometric elements and preliminary absolute dimensions have been determined. The quite similar components have masses of about 5 M and radii of about 3.5 R, and they seem to have evolved just slightly off the ZAMS. The
measured rotational velocities (â150 km sâ1) are about 6 times those corresponding to pseudosynchronization
A Blue Straggler Binary System with at least Three Progenitors in the Core of a Globular Cluster?
We show that the X-ray source W31 in the core of the globular cluster 47
Tucanae is physically associated with the bright blue straggler BSS-7. The two
sources are astrometrically matched to 0.061\arcsec, with a chance coincidence
probability of less than 1%. We then analyse optical time-series photometry
obtained with the {\em Hubble Space Telescope} (HST) and find that BSS-7
displays a 1.56 day periodic signal in the I band. We also construct a
broad-band (far-ultraviolet through far-red) spectral energy distribution for
BSS-7 and fit this with single and binary models. The binary model is a better
fit to the data, and we derive the corresponding stellar parameters.
All of our findings are consistent with BSS-7 being a detached binary
consisting of a blue straggler primary with an X-ray-active,
upper-main-sequence companion. The formation of such a system would necessarily
involve at least three stars, which is consistent with recent N-body models in
which blue stragglers often form via multiple encounters that can involve both
single and binary stars. However, we cannot yet entirely rule out the
possibility that BSS-7 descended directly from a binary system via mass
transfer. The system parameters needed to distinguish definitively between
these scenarios may be obtainable from time-resolved spectroscopy.Comment: 19 pages, 3 figures, accepted for publication in ApJ; revised version
includes a discussion of an alternative 2-progenitor binary evolution
scenario, and an appendix discussing other probable/possible BSS/X-ray
matches in globular clusters and related source
Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip
Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics
The CORALIE survey for southern extra-solar planets IX. A 1.3-day period brown dwarf disguised as a planet
In this article we present the case of HD 41004 AB, a system composed of a
K0V star and a 3.7-magnitude fainter M-dwarf companion separated by only 0.5
arcsec. An analysis of CORALIE radial-velocity measurements has revealed a
variation with an amplitude of about 50m/s and a periodicity of 1.3days. This
radial-velocity signal is consistent with the expected variation induced by the
presence a very low mass giant planetary companion to HD 41004 A, whose light
dominates the spectra. The radial-velocity measurements were then complemented
with a photometric campaign and with the analysis of the bisector of the
CORALIE Cross-Correlation Function (CCF). While the former revealed no
significant variations within the observational precision of 0.003-0.004 mag
(except for an observed flare event), the bisector analysis showed that the
line profiles are varying in phase with the radial-velocity. This latter
result, complemented with a series of simulations, has shown that we can
explain the observations by considering that HD 41004 B has a brown-dwarf
companion orbiting with the observed 1.3-day period. If confirmed, this
detection represents the first discovery of a brown dwarf in a very short
period (1.3-day) orbit around an M dwarf. Finally, this case should be taken as
a serious warning about the importance of analyzing the bisector when looking
for planets using radial-velocity techniques.Comment: 16 pages, 17 eps figures, A&A in press (Figure 11 not as in original
version due to size
Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot
We present a detailed study of the F-type detached eclipsing binary BK Peg,
based on new photometric and spectroscopic observations. The two components,
which have evolved to the upper half of the main-sequence band, are quite
different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun)
and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day
period orbit of BK Peg is slightly eccentric (e = 0.053). The measured
rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary)
km/s. For the secondary component this corresponds to (pseudo)synchronous
rotation, whereas the primary component seems to rotate at a slightly lower
rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar
abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina
evolutionary models for the observed metal abundance reproduce BK Peg at ages
of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the
more massive primary component than for the secondary. We find the same age
trend for three other upper main-sequence systems in a sample of well studied
eclipsing binaries with components in the 1.15-1.70 Msun range, where
convective core overshoot is gradually ramped up in the models. We also find
that the Yonsei-Yale models systematically predict higher ages than the
Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have
determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We
propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing
binaries to fine-tune convective core overshoot, diffusion, and possibly other
ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic
Four-colour photometry of eclipsing binaries. XLI uvby light curves for AD Bootis, HW Canis Majoris, SW Canis Majoris, V636 Centauri, VZ Hydrae, and WZ Ophiuchi
CONTEXT: Accurate mass, radius, and abundance determinations from binaries
provide important information on stellar evolution, fundamental to central
fields in modern astrophysics and cosmology.
AIMS: Within the long-term Copenhagen Binary Project, we aim to obtain
high-quality light curves and standard photometry for double-lined detached
eclipsing binaries with late A, F, and G type main-sequence components, needed
for the determination of accurate absolute dimensions and abundances, and for
detailed comparisons with results from recent stellar evolutionary models.
METHODS: Between March 1985 and July 2007, we carried out photometric
observations of AD Boo, HW CMA, SW CMa, V636 Cen, VZ Hya, and WZ Oph at the
Str"omgren Automatic Telescope at ESO, La Silla.
RESULTS: We obtained complete uvby light curves, ephemerides, and standard
uvby\beta indices for all six systems.For V636 Cen and HW CMa, we present the
first modern light curves, whereas for AD Boo, SW CMa, VZ Hya, and WZ Oph, they
are both more accurate and more complete than earlier data. Due to a high
orbital eccentricity (e = 0.50), combined with a low orbital inclination (i =
84.7), only one eclipse, close to periastron, occurs for HW CMa. For the two
other eccentric systems, V636 Cen (e = 0.134) and SW CMa (e = 0.316), apsidal
motion has been detected with periods of 5270 +/- 335 and 14900 +/- 3600 years,
respectively.Comment: Only change is: Bottom lines (hopefully) not truncated anymore.
Accepted for publication in Astonomy & Astrophysic
- âŠ