4,467 research outputs found

    A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771

    Full text link
    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 MM_\odot stars. Methods. We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results. The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor

    Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    Get PDF
    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced between poloidal and toroidal components. However we find tentative evidence of a change in the poloidal/toroidal ratio in 2009 with the poloidal component becoming more dominant. At all epochs the radial magnetic field is predominantly non-axisymmetric while the azimuthal field is predominantly axisymmetric with a ring of positive azimuthal field around the pole similar to that seen on other active stars.Comment: 18 pages, 17 figures, accepted by MNRA

    Dynamo Processes in the T Tauri star V410 Tau

    Full text link
    We present new brightness and magnetic images of the weak-line T Tauri star V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope Bernard Lyot (TBL). The brightness image shows a large polar spot and significant spot coverage at lower latitudes. The magnetic maps show a field that is predominantly dipolar and non-axisymmetric with a strong azimuthal component. The field is 50% poloidal and 50% toroidal, and there is very little differential rotation apparent from the magnetic images. A photometric monitoring campaign on this star has previously revealed V-band variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter. The Doppler image presented here is consistent with this low variability. Calculating the flux predicted by the mapped spot distribution gives an peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of the lightcurve, compared with previous observations, appears to be related to a change in the distribution of the spots, rather than the number or area. This paper is the first from a Zeeman-Doppler imaging campaign being carried out on V410 Tau between 2009-2012 at TBL. During this time it is expected that the lightcurve will return to a high amplitude state, allowing us to ascertain whether the photometric changes are accompanied by a change in the magnetic field topology.Comment: 12 pages, 11 figures, accepted by MNRA

    Eosinophilic ulcer of the tongue - Case report.

    Get PDF
    Eosinophilic ulcer of the oral mucosa is a rare, self-limiting, chronic and benign lesion of unknown pathogenesis that affects the oral mucosa. We present the case of a 65 year-old Caucasian female with a fivemonth history of a painful ulcer on the lateral side of her tongue. The ulcer was not adhered to the underlying structures and there was no evidence of regional lymph node involvement. Laboratory examinations and X-rays revealed no abnormalities. Topical treatments had been performed without any improvement. Histopathological examination showed an ulcerated surface and mixed inflammatory infiltrate with several eosinophils extending into the mucosa and submucosa. No cellular atypia was observed. Based on the patient-s history and mucosal biopsy, a final diagnosis of eosinophilic ulcer of the oral mucosa was made

    Girsanov reweighting for metadynamics simulations

    Get PDF
    Metadynamics is a computational method to explore the phase space of a molecular system. Gaussian functions are added along relevant coordinates on the fly during a molecular-dynamics simulation to force the system to escape from minima in the potential energy function. The dynamics in the resulting trajectory are however unphysical and cannot be used directly to estimate dynamical prop- erties of the system. Girsanov reweighting is a recent method used to construct the Markov State Model (MSM) of a system subjected to an external perturbation. With the combination of these two techniques—metadynamics/Girsanov-reweighting—the unphysical dynamics in a metadynam- ics simulation can be reweighted to obtain the MSM of the unbiased system. We demonstrate the method on a one-dimensional diffusion process, alanine dipeptide, and the hexapeptide Val-Gly- Val-Ala-Pro-Gly (VGVAPG). The results are in excellent agreement with the MSMs obtained from direct unbiased simulations of these systems. We also apply metadynamics/Girsanov-reweighting to a β-hairpin peptide, whose dynamics is too slow to efficiently explore its phase space by direct simulation

    Surface magnetic fields on two accreting T Tauri stars: CV Cha and CR Cha

    Get PDF
    We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3-5 Myr. Our magnetic field maps show evidence for strong, complex multi-polar fields similar to those obtained for young rapidly rotating main sequence stars. Brightness maps indicate the presence of dark polar caps and low latitude spots -- these brightness maps are very similar to those obtained for other pre-main sequence and rapidly rotating main sequence stars. Only two other classical T Tauri stars have been studied using similar techniques so far: V2129 Oph and BP Tau. CV Cha and CR Cha show magnetic field patterns that are significantly more complex than those recovered for BP Tau, a fully convective T Tauri star. We discuss possible reasons for this difference and suggest that the complexity of the stellar magnetic field is related to the convection zone; with more complex fields being found in T Tauri stars with radiative cores (V2129 Oph, CV Cha and CR Cha). However, it is clearly necessary to conduct magnetic field studies of T Tauri star systems, exploring a wide range of stellar parameters in order to establish how they affect magnetic field generation, and thus how these magnetic fields are likely to affect the evolution of T Tauri star systems as they approach the main sequence.Comment: Accepted for publication by MNRAS: 15 pages, 11 figure

    Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold

    Full text link
    From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars. We reconstruct the large-scale magnetic geometry of the targets as a low-order (l<10) spherical harmonics expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (a) The magnetic energy of the large-scale field increases with rotation rate. The increase of chromospheric emission with the mean magnetic field is flatter than observed in the Sun. Since the chromospheric flux is also sensitive to magnetic elements smaller than those contributing to the polarimetric signal, this observation suggests that a larger fraction of the surface magnetic energy is stored in large scales as rotation increases. (b) Whereas the magnetic field is mostly poloidal for low rotation rates, more rapid rotators host a large-scale toroidal component in their surface field. From our observations, we infer that a rotation period lower than ~12 days is necessary for the toroidal magnetic energy to dominate over the poloidal component.Comment: MNRAS (in press

    A dominant magnetic dipole for the evolved Ap star candidate EK Eridani

    Full text link
    EK Eri is one of the most slowly rotating active giants known, and has been proposed to be the descendant of a strongly magnetic Ap star. We have performed a spectropolarimetric study of EK Eri over 4 photometric periods with the aim of inferring the topology of its magnetic field. We used the NARVAL spectropolarimeter at the Bernard Lyot telescope at the Pic du Midi Observatory, along with the least-squares deconvolution method, to extract high signal-to-noise ratio Stokes V profiles from a timeseries of 28 polarisation spectra. We have derived the surface-averaged longitudinal magnetic field Bl. We fit the Stokes V profiles with a model of the large-scale magnetic field and obtained Zeeman Doppler images of the surface magnetic strength and geometry. Bl variations of up to about 80 G are observed without any reversal of its sign, and which are in phase with photometric ephemeris. The activity indicators are shown to vary smoothly on a timescale compatible with the rotational period inferred from photometry (308.8 d.), however large deviations can occur from one rotation to another. The surface magnetic field variations of EK Eri appear to be dominated by a strong magnetic spot (of negative polarity) which is phased with the dark (cool) photometric spot. Our modeling shows that the large-scale magnetic field of EK Eri is strongly poloidal. For a rotational axis inclination of i = 60{\deg}, we obtain a model that is almost purely dipolar. In the dipolar model, the strong magnetic/photometric spot corresponds to the negative pole of the dipole, which could be the remnant of that of an Ap star progenitor of EK Eri. Our observations and modeling conceptually support this hypothesis, suggesting an explanation of the outstanding magnetic properties of EK Eri as the result of interaction between deep convection and the remnant of an Ap star magnetic dipole.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    EK Eridani: the tip of the iceberg of giants which have evolved from magnetic Ap stars

    Full text link
    We observe the slowly-rotating, active, single giant, EK Eri, to study and infer the nature of its magnetic field directly. We used the spectropolarimeter NARVAL at the Telescope Bernard Lyot, Pic du Midi Observatory, and the Least Square Deconvolution method to create high signal-to-noise ratio Stokes V profiles. We fitted the Stokes V profiles with a model of the large-scale magnetic field. We studied the classical activity indicators, the CaII H and K lines, the CaII infrared triplet, and H\alpha line. We detected the Stokes V signal of EK Eri securely and measured the longitudinal magnetic field Bl for seven individual dates spanning 60% of the rotational period. The measured longitudinal magnetic field of EK Eri reached about 100 G and was as strong as fields observed in RSCVn or FK Com type stars: this was found to be extraordinary when compared with the weak fields observed at the surfaces of slowly-rotating MS stars or any single red giant previously observed with NARVAL. From our modeling, we infer that the mean surface magnetic field is about 270 G, and that the large scale magnetic field is dominated by a poloidal component. This is compatible with expectations for the descendant of a strongly magnetic Ap star.Comment: 8 pages, 6 figures. Accepted for publication in A&

    Vertical abundance stratification in the blue horizontal branch star HD135485

    Get PDF
    It is commonly believed that the observed overabundances of many chemical species relative to the expected cluster metallicity in blue horizontal branch (BHB) stars appear as a result of atomic diffusion in the photosphere. The slow rotation of BHB stars (with T_eff > 11,500K), typically v sin{i} < 10 km/s, is consistent with this idea. In this work we search for observational evidence of vertical chemical stratification in the atmosphere of HD135485. If this evidence exists, it will demonstrate the importance of atomic diffusion processes in the atmospheres of BHB stars. We undertake an extensive abundance stratification analysis of the atmosphere of HD135485, based on recently acquired high resolution and S/N CFHT ESPaDOnS spectra and a McDonald-CE spectrum. Our numerical simulations show that nitrogen and sulfur reveal signatures of vertical abundance stratification in the stellar atmosphere. It appears that the abundances of these elements increase toward the upper atmosphere. This fact cannot be explained by the influence of microturbulent velocity, because oxygen, carbon, neon, argon, titanium and chromium do not show similar behavior and their abundances remain constant throughout the atmosphere. It seems that the iron abundance may increase marginally toward the lower atmosphere. This is the first demonstration of vertical abundance stratification of metals in a BHB star.Comment: 8 pages, 5 figures, accepted to A&
    corecore